Multiscale Convergence Properties for Spectral Approximations of a Model Kinetic Equation

Zheng Chen

Department of Mathematics University of Massachusetts Dartmouth zchen2@umassd.edu

Numerical Methods Seminar Department of Mathematical Sciences Worcester Polytechnic Institute

September 26, 2019

Acknowledgements

Collaborator:

Cory Hauck (ORNL / UTK)

• Sponsor:

US Department of Energy, Applied Math Program

Outline

Introduction

- **3** Theoretical results: isotropic i.c.
- **4** Benefits from P_N to P_{N+1}
- **5** Results: anisotropic i.c.

Introduction

Problem Setting

(a) Visualization of a Hohlraum

(b) Assembly for a Boiling Water Reactor

- Particles passing through a static material medium are absorbed, scattered, or emitted by the material.
- Particles are characterized by a kinetic density $f(x, E, \Omega, t)$ where
 - $x \in X \subset \mathbb{R}^3$ is the particle **position**
 - $E \in (0,\infty)$ is the particle energy
 - $\Omega \in \mathbb{S}^2$ is the particle **direction** of flight
 - ► t ≥ 0 is time

Linear Transport Equation

• Cauchy problem for the **kinetic density** $f(x, \Omega, t)$:

- ▶ Mono-energetic particles with speed 1 (single group, so independent of *E*)
- domain: $x \in \mathbb{R}^3$, $\Omega \in \mathbb{S}^2$, $t \in [0, \infty)$
- cross-sections: $\sigma_{\rm a}$ and $\sigma_{\rm s}$ are absorption and scattering cross-sections
- angular average: $\bar{f} = \frac{1}{4\pi} \int_{\mathbb{S}^2} f(x, \Omega, t) d\Omega$
- source (emitting particles): q

Linear Transport Equation

• Cauchy problem for the **kinetic density** $f(x, \Omega, t)$:

- ▶ Mono-energetic particles with speed 1 (single group, so independent of *E*)
- domain: $x \in \mathbb{R}^3$, $\Omega \in \mathbb{S}^2$, $t \in [0, \infty)$
- \blacktriangleright cross-sections: $\sigma_{\rm a}$ and $\sigma_{\rm s}$ are absorption and scattering cross-sections
- angular average: $\bar{f} = \frac{1}{4\pi} \int_{\mathbb{S}^2} f(x, \Omega, t) d\Omega$
- source (emitting particles): q
- Assumptions: static material, isotropic scattering, no absorption ($\sigma_{\rm a}=0$) and no source (q=0)

$$\partial_t f + \Omega \cdot \nabla_x f + \sigma_{\rm s}(f - \bar{f}) = 0$$

Applications

- Photons (fusion reactors, radiation in clouds, radiotherapy)
- Neutrinos (core-collapse supernova)
- Neutrons (fission reactors, imaging and scattering experiments)
- Electron transport in materials (semi-conductors, radiotherapy)
- Plasma simulations (fusion, plasma switches, space weather)

Visualization of a Hohlraum

Assembly for a Boiling Water Reactor

Numerical Challenges

- High dimensional space: $x \in \mathbb{R}^3$, $\Omega \in \mathbb{S}^2$, 5D
- Coupling to the medium: nonlinearity, e.g. $\sigma_s(f)$.
- Multiscale dynamics: diffusive, streaming, and transition regimes
 - Diffusive scaling
 - \star "strong scattering": $\sigma_{
 m s}
 ightarrow \epsilon^{-1} \sigma_{
 m s}$
 - ★ "long-time dynamics": $t \to \epsilon^{-1} t$
 - Scaled equation (WLOG, $\sigma_{\rm s}=1$)

$$\epsilon \partial_t f + \Omega \cdot \nabla_{\times} f + rac{1}{\epsilon} (f - \overline{f}) = 0$$

Transport in 1-D

• Slab transport: the kinetic density $f(x, \mu, t)$ is the solution to

$$\epsilon \partial_t f + \mu \partial_x f + \frac{1}{\epsilon} (f - \bar{f}) = 0 \tag{1}$$

- x ∈ [−π, π): scalar coordinate along the axis perpendicular to a material slab; add periodic boundary condition
- µ ∈ [-1,1]: the cosine of the angle between the x-axis and the direction of particle travel
- $\bar{f} = \frac{1}{2} \int_{-1}^{1} f \, d\mu$: angular average
- *ϵ* > 0: a scaling parameter measuring the relative strength of different processes
- initial condition $f(x, \mu, 0) = g(x, \mu)$

Transport in 1-D

• Slab transport:

$$\epsilon \partial_t f + \mu \partial_x f + \frac{1}{\epsilon} (f - \bar{f}) = 0$$

• Denote the evolution operator as

$$\mathcal{T} \colon f \mapsto -\left(\mu \partial_{\mathsf{x}} f + rac{1}{\epsilon}(f-ar{f})
ight)$$

then (1) becomes

 $\epsilon \partial_t f = \mathcal{T} f.$

(1)

Spectral Approximation (Angular Discretization)

- Spectral approximation on μ : collision \rightarrow smoothness
- Legendre expansion for f in μ :

$$f(x,\mu,t) = \sum_{\ell=0}^{\infty} f_{\ell}(x,t) p_{\ell}(\mu), \qquad f_{\ell}(x,t) = \int_{-1}^{1} p_{\ell}(\mu) f(x,\mu,t) d\mu,$$

where $p_{\ell}(\mu)$ are the normalized Legendre polynomials, which satisfy

 $\mu p_{\ell} = a_{\ell} p_{\ell+1} + a_{\ell-1} p_{\ell-1}.$

• The coefficients/moments f_{ℓ} correspond to the physical quantities.

Spectral Approximation (Angular Discretization)

• slab transport:

$$\epsilon \partial_t f + \mu \partial_x f + \frac{1}{\epsilon} (f - \bar{f}) = 0$$

• Moment equations (infinite system):

$$\begin{cases} \epsilon \partial_t f_0 + a_0 \partial_x f_1 = 0, & \ell = 0; \\ \epsilon \partial_t f_\ell + a_\ell \partial_x f_{\ell+1} + a_{\ell-1} \partial_x f_{\ell-1} + \frac{1}{\epsilon} f_\ell = 0, & \ell \ge 1. \end{cases}$$

• *P_N* equations (closure of moments):

$$\left\{ \begin{array}{ll} \epsilon \partial_t f_0^N + a_0 \partial_x f_1^N = 0, & \ell = 0; \\ \epsilon \partial_t f_\ell^N + a_\ell \partial_x f_{\ell+1}^N + a_{\ell-1} \partial_x f_{\ell-1}^N + \frac{1}{\epsilon} f_\ell^N = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t f_N^N + a_{N-1} \partial_x f_{N-1}^N + \frac{1}{\epsilon} f_N^N = 0, & \ell = N. \end{array} \right.$$

Motivation

Diffusion Limit

• Diffusion Approximation: in diffusive regimes (high scattering $\epsilon \ll 1$)

$$f =
ho + \mathcal{O}(\epsilon), \qquad
ho = rac{1}{2} \int_{-1}^{1} f(x, \mu) d\mu$$
 $\partial_t
ho - \partial_x \left(rac{1}{3} \partial_x
ho\right) = 0$

- Formal results based on Hilbert expansion:
 - Larsen and Keller 1974
 - Habetler and Matkowsky 1975
- Rigorous analysis
 - Blankenship and Papanicolaou 1978
 - Bardos, Santos and Sentis 1984
- Cheap
- Inaccurate in non-diffusive regimes

• $0 < \epsilon < 1$, but not $\epsilon \ll 1$

- $0 < \epsilon < 1$, but not $\epsilon \ll 1$
- Classical error estimate for spectral method:

$$|f(\cdot,\cdot,t)-f^N(\cdot,\cdot,t)||_{L^2(dxd\mu)}\leq \frac{C(t)}{Ng}$$

- $0 < \epsilon < 1$, but not $\epsilon \ll 1$
- Classical error estimate for spectral method:

$$|f(\cdot,\cdot,t)-f^{N}(\cdot,\cdot,t)||_{L^{2}(d\times d\mu)}\leq \frac{C(t)}{N^{q}}.$$

• Question: A good ϵ dependent estimate?

- $0 < \epsilon < 1$, but not $\epsilon \ll 1$
- Classical error estimate for spectral method:

$$|f(\cdot,\cdot,t)-f^N(\cdot,\cdot,t)||_{L^2(dxd\mu)}\leq \frac{C(t)}{Nq}.$$

• Question: A good ϵ dependent estimate?

Guess: for $0 < \epsilon < 1$,

$$e^{N} = f - f^{N} = \mathcal{O}(\epsilon^{N+1}).$$

Errors of P_N methods

$$e^{\mathsf{N}} := f - f^{\mathsf{N}} = \eta + \xi$$

• Consistency error

$$\eta := f - \mathcal{P}(f) = \sum_{\ell=N+1}^{\infty} f_{\ell}(x, t) p_{\ell}(\mu)$$

• Stability error

$$\xi := \mathcal{P}(f) - f^N = \sum_{\ell=0}^N \xi_\ell(x, t) p_\ell(\mu)$$

with moment error

$$\xi_\ell = f_\ell - f_\ell^N.$$

Numerical Observation

Example: Consider

$$\begin{cases} \epsilon \partial_t f + \mu \partial_x f + \frac{1}{\epsilon} f = \frac{1}{\epsilon} \bar{f}, t \in (0, 1], \\ f(0, x, \mu) = g^{(i)}(x, \mu), \end{cases}$$

for $[x, \mu] \in [-\pi, \pi) \times [-1, 1]$, with periodic boundary condition and three different initial conditions:

$$\begin{split} g^{(1)} &= (1+\mu-\mu^2) \left(1+\mathbf{1}_{[-\frac{\pi}{2},\frac{\pi}{2}]}(x)\right), \\ g^{(2)} &= (1+\mu-\mu^2) \left(1+\cos x \,\mathbf{1}_{[-\frac{\pi}{2},\frac{\pi}{2}]}(x)\right), \\ g^{(3)} &= (1+\mu-\mu^2) \left(1+\cos x\right). \end{split}$$

					g ⁽¹⁾					
e	f ₀ ^N	order	f_1^N	order	f ₂ ^N	order	f ₃ ^N	order	f_4^N	order
	Ŭ 0		-	1	-	2		3		4
1/2	1.45E+00		1.01E-01		3.16E-02		1.36E-02		1.15E-02	
1/8	1.44E+00	0.00	2.22E-02	1.09	1.47E-03	2.21	1.10E-04	3.47	1.34E-05	4.87
1/32	1.44E+00	0.00	5.50E-03	1.01	9.06E-05	2.01	1.66E-06	3.02	4.74E-08	4.07
1/128	1.44E+00	0.00	1.37E-03	1.00	5.66E-06	2.00	2.59E-08	3.00	1.84E-10	4.00
1/512	1.44E+00	0.00	3.44E-04	1.00	3.54E-07	2.00	4.05E-10	3.00	7.18E-13	4.00

g ⁽²⁾												
e	f ₀ ^N	order	f_1^N	order	f ₂ ^N	order	f ₃ ^N	order	f_4^N	order		
1/2	1.27E+00		8.69E-02		2.83E-02		9.81E-03		5.35E-03			
1/8	1.27E+00	0.00	1.83E-02	1.12	1.34E-03	2.20	1.17E-04	3.20	1.27E-05	4.36		
1/32	1.27E+00	0.00	4.52E-03	1.01	8.21E-05	2.01	1.77E-06	3.02	4.70E-08	4.04		
1/128	1.27E+00	0.00	1.13E-03	1.00	5.13E-06	2.00	2.76E-08	3.00	1.83E-10	4.00		
1/512	1.27E+00	0.00	2.82E-04	1.00	3.20E-07	2.00	4.31E-10	3.00	7.14E-13	4.00		

	10	Δ
σ	v۲	v
- 5		

					· · · · · · · · · · · · · · · · · · ·					
e	f ₀ ^N	order	f_1^N	order	f_2^N	order	f_3^N	order	f_4	order
1/2	1.09E+00		1.53E-01		3.91E-02		1.15E-02		3.95E-03	
1/8	1.06E+00	0.02	3.48E-02	1.07	2.25E-03	2.06	1.43E-04	3.17	9.04E-06	4.39
1/32	1.06E+00	0.00	8.62E-03	1.01	1.39E-04	2.01	2.21E-06	3.01	3.47E-08	4.01
1/128	1.06E+00	0.00	2.15E-03	1.00	8.69E-06	2.00	3.44E-08	3.00	1.36E-10	4.00
1/512	1.06E+00	0.00	5.39E-04	1.00	5.43E-07	2.00	5.38E-10	3.00	5.30E-13	4.00

Table: Convergence rate of the coefficients f_{ℓ}^N in L^2 norm for P_4 method at t = 1.

 $f_{\ell} \sim f_{\ell}^{N} = \mathcal{O}(\epsilon^{\ell}), \qquad \ell = 0, 1, \dots, N.$

					g ⁽¹⁾					
e	f ₀ N	order	f_1^N	order	f ₂ ^N	order	f ₃ ^N	order	f_4^N	order
	Ŭ 0		-	1	-	2		3		4
1/2	1.45E+00		1.01E-01		3.16E-02		1.36E-02		1.15E-02	
1/8	1.44E+00	0.00	2.22E-02	1.09	1.47E-03	2.21	1.10E-04	3.47	1.34E-05	4.87
1/32	1.44E+00	0.00	5.50E-03	1.01	9.06E-05	2.01	1.66E-06	3.02	4.74E-08	4.07
1/128	1.44E+00	0.00	1.37E-03	1.00	5.66E-06	2.00	2.59E-08	3.00	1.84E-10	4.00
1/512	1.44E+00	0.00	3.44E-04	1.00	3.54E-07	2.00	4.05E-10	3.00	7.18E-13	4.00

					g` ′					
e	f ₀ ^N	order	f_1^N	order	f ₂ ^N	order	f ₃ ^N	order	f_4^N	order
1/2	1.27E+00		8.69E-02		2.83E-02		9.81E-03		5.35E-03	
1/8	1.27E+00	0.00	1.83E-02	1.12	1.34E-03	2.20	1.17E-04	3.20	1.27E-05	4.36
1/32	1.27E+00	0.00	4.52E-03	1.01	8.21E-05	2.01	1.77E-06	3.02	4.70E-08	4.04
1/128	1.27E+00	0.00	1.13E-03	1.00	5.13E-06	2.00	2.76E-08	3.00	1.83E-10	4.00
1/512	1.27E+00	0.00	2.82E-04	1.00	3.20E-07	2.00	4.31E-10	3.00	7.14E-13	4.00

(2)

					g ⁽³⁾					
ε	f ₀ ^N	order	f_1^N	order	f_2^N	order	f_3^N	order	f ₄ ^N	order
1/2	1.09E+00		1.53E-01		3.91E-02		1.15E-02		3.95E-03	
1/8	1.06E+00	0.02	3.48E-02	1.07	2.25E-03	2.06	1.43E-04	3.17	9.04E-06	4.39
1/32	1.06E+00	0.00	8.62E-03	1.01	1.39E-04	2.01	2.21E-06	3.01	3.47E-08	4.01
1/128	1.06E+00	0.00	2.15E-03	1.00	8.69E-06	2.00	3.44E-08	3.00	1.36E-10	4.00
1/512	1.06E+00	0.00	5.39E-04	1.00	5.43E-07	2.00	5.38E-10	3.00	5.30E-13	4.00

(2)

Table: Convergence rate of the coefficients f_{ℓ}^N in L^2 norm for P_4 method at t = 1.

 $f_{\ell} \sim f_{\ell}^{N} = \mathcal{O}(\epsilon^{\ell}), \qquad \ell = 0, 1, \dots, N.$

• $\eta = \mathcal{O}(\epsilon^{N+1})$. This is expected.

					8 /					
e	f_0^N	order	f_1^N	order	f ₂ ^N	order	f_3^N	order	f_4^N	order
	0		-	1	-	2	-	3		4
1/2	1.45E+00		1.01E-01		3.16E-02		1.36E-02		1.15E-02	
1/8	1.44E+00	0.00	2.22E-02	1.09	1.47E-03	2.21	1.10E-04	3.47	1.34E-05	4.87
1/32	1.44E+00	0.00	5.50E-03	1.01	9.06E-05	2.01	1.66E-06	3.02	4.74E-08	4.07
1/128	1.44E+00	0.00	1.37E-03	1.00	5.66E-06	2.00	2.59E-08	3.00	1.84E-10	4.00
1/512	1.44E+00	0.00	3.44E-04	1.00	3.54E-07	2.00	4.05E-10	3.00	7.18E-13	4.00

(1)

					g` ′					
e	f ₀ ^N	order	f_1^N	order	f ₂ ^N	order	f ₃ ^N	order	f_4^N	order
1/2	1.27E+00		8.69E-02		2.83E-02		9.81E-03		5.35E-03	
1/8	1.27E+00	0.00	1.83E-02	1.12	1.34E-03	2.20	1.17E-04	3.20	1.27E-05	4.36
1/32	1.27E+00	0.00	4.52E-03	1.01	8.21E-05	2.01	1.77E-06	3.02	4.70E-08	4.04
1/128	1.27E+00	0.00	1.13E-03	1.00	5.13E-06	2.00	2.76E-08	3.00	1.83E-10	4.00
1/512	1.27E+00	0.00	2.82E-04	1.00	3.20E-07	2.00	4.31E-10	3.00	7.14E-13	4.00

(2)

					g ⁽³⁾					
e	f ₀ ^N	order	f_1^N	order	f_2^N	order	f ₃ ^N	order	f_4^N	order
1/2	1.09E+00		1.53E-01		3.91E-02		1.15E-02		3.95E-03	
1/8	1.06E+00	0.02	3.48E-02	1.07	2.25E-03	2.06	1.43E-04	3.17	9.04E-06	4.39
1/32	1.06E+00	0.00	8.62E-03	1.01	1.39E-04	2.01	2.21E-06	3.01	3.47E-08	4.01
1/128	1.06E+00	0.00	2.15E-03	1.00	8.69E-06	2.00	3.44E-08	3.00	1.36E-10	4.00
1/512	1.06E+00	0.00	5.39E-04	1.00	5.43E-07	2.00	5.38E-10	3.00	5.30E-13	4.00

Table: Convergence rate of the coefficients f_{ℓ}^N in L^2 norm for P_4 method at t = 1.

 $f_{\ell} \sim f_{\ell}^{N} = \mathcal{O}(\epsilon^{\ell}), \qquad \ell = 0, 1, \dots, N.$

• $\eta = \mathcal{O}(\epsilon^{N+1})$. This is expected.

• What about ξ ? And e^N ?

					•					
e	P ₁ error	order	P ₂ error	order	P3 error	order	P ₄ error	order	P ₅ error	order
	1+1=2		2 + 1 = 3		3 + 1 = 4		4 + 1 = 5		5+1=6	
1/2	5.62E-02		3.00E-02		1.86E-02		1.37E-02		1.09E-02	
1/8	2.05E-03	2.39	1.18E-04	4.00	1.35E-05	5.21	2.34E-06	6.26	4.42E-07	7.30
1/32	1.26E-04	2.01	1.67E-06	3.07	4.74E-08	4.08	2.00E-09	5.10	9.30E-11	6.11
1/128	7.88E-06	2.00	2.59E-08	3.00	1.84E-10	4.00	1.94E-12	5.01	2.25E-14	6.01
1/512	4.93E-07	2.00	4.05E-10	3.00	7.18E-13	4.00	1.89E-15	5.00	5.49E-18	6.00

 $\sigma(1)$

	(2)	
σ	(-)	

					•					
e	P ₁ error	order	P ₂ error	order	P ₃ error	order	P ₄ error	order	P ₅ error	order
1/2	3.79E-02		1.32E-02		6.05E-03		3.28E-03		2.03E-03	
1/8	1.96E-03	2.14	1.20E-04	3.39	1.27E-05	4.45	1.54E-06	5.53	1.97E-07	6.66
1/32	1.21E-04	2.01	1.77E-06	3.04	4.70E-08	4.04	1.41E-09	5.05	4.44E-11	6.06
1/128	7.53E-06	2.00	2.76E-08	3.00	1.83E-10	4.00	1.37E-12	5.00	1.08E-14	6.00
1/512	4.70E-07	2.00	4.31E-10	3.00	7.14E-13	4.00	1.33E-15	5.00	2.63E-18	6.00

	()	Δ.
_	10	•
2	× -	

e	P ₁ error	order	P ₂ error	order	P ₃ error	order	P ₄ error	order	P ₅ error	order
1/2	4.70E-02		1.28E-02		4.01E-03		1.10E-03		2.50E-04	
1/8	2.79E-03	2.04	1.44E-04	3.24	9.04E-06	4.40	5.69E-07	5.46	3.57E-08	6.39
1/32	1.74E-04	2.00	2.21E-06	3.01	3.47E-08	4.01	5.46E-10	5.01	8.56E-12	6.01
1/128	1.08E-05	2.00	3.44E-08	3.00	1.36E-10	4.00	5.32E-13	5.00	2.09E-15	6.00
1/512	6.78E-07	2.00	5.38E-10	3.00	5.30E-13	4.00	5.20E-16	5.00	5.09E-19 ¹	6.00

Table: Convergence rate of the L^2 error for P_1 to P_5 methods (compared with as a reference solution from P_{65}) at t = 1.

 $e^{N} = f - f^{N} = \mathcal{O}(\epsilon^{N+1})$

¹Multiprecision Computing Toolbox for MATLAB by Advanpix LLC. with 250 digits is used.

					g` ′					
ε	ξ_0^N	order	ε <mark>Ν</mark>	order	ξ_2^N	order	ξ_3^N	order	ξ_4^N	order
	2 >	< 4 = 8	2 × 4 -	+1 = 9	2>	< 4 = 8	2 × 4 -	- 1 = 7	2 × 4 -	- 2 = 6
1/2	5.48E-03		3.36E-03		4.63E-03		4.02E-03		5.79E-03	
1/8	5.30E-08	8.33	1.08E-08	9.12	1.85E-08	8.96	8.13E-08	7.80	4.26E-07	6.86
1/32	7.16E-13	8.09	3.44E-14	9.13	2.14E-13	8.20	4.41E-12	7.09	9.30E-11	6.08
1/128	1.08E-17	8.01	1.30E-19	9.01	3.21E-18	8.01	2.67E-16	7.01	2.25E-14	6.01
1/512	1.65E-22	8.00	4.95E-25	9.00	4.89E-23	8.00	1.63E-20	7.00	5.50E-18	6.00

(1)

					8 '					
ε	ξ_0^N	order	ε ^Ν	order	ξ_2^N	order	ξ_3^N	order	ξ_4^N	order
1/2	7.92E-04		4.15E-04		7.04E-04		7.69E-04		1.24E-03	
1/8	1.76E-08	7.73	4.01E-09	8.33	5.46E-09	8.49	2.66E-08	7.41	1.93E-07	6.32
1/32	2.24E-13	8.13	1.28E-14	9.13	6.00E-14	8.24	1.50E-12	7.06	4.44E-11	6.05
1/128	3.38E-18	8.01	4.82E-20	9.01	8.97E-19	8.01	9.11E-17	7.00	1.08E-14	6.00
1/512	5.15E-23	8.00	1.84E-25	9.00	1.37E-23	8.00	5.56E-21	7.00	2.63E-18	6.00

(2)

					g ⁽³⁾					
ε	ξ_0^N	order	ϵ_1^N	order	ξ_2^N	order	ξ_3^N	order	ξ_4^N	order
1/2	2.81E-07		1.11E-06		7.75E-06		4.68E-05		2.41E-04	
1/8	1.01E-10	5.72	2.26E-12	9.46	1.43E-10	7.86	2.25E-09	7.17	3.56E-08	6.36
1/32	1.59E-15	7.97	5.94E-18	9.27	2.14E-15	8.01	1.35E-13	7.01	8.57E-12	6.01
1/128	2.43E-20	8.00	2.20E-23	9.02	3.26E-20	8.00	8.23E-18	7.00	2.09E-15	6.00
1/512	3.71E-25	8.00	8.36E-29	9.00	4.97E-25	8.00	5.02E-22	7.00	5.10E-19	6.00

Table: Convergence rate of the L^2 error ξ_{ℓ}^N of the coefficients f_{ℓ}^N for P_4 method at t = 1.

$$\xi_{\ell}^{N} := f_{\ell} - f_{\ell}^{N} = \begin{cases} \mathcal{O}(\epsilon^{2N}) & \ell = 0; \\ \mathcal{O}(\epsilon^{2N+2-\ell}), & \ell = 1, \dots, N \end{cases}$$

• Formal $\xi_1^N = \mathcal{O}(\epsilon^{2N+1})$ [Larsen, Morel and McGhee 1996]

• Formal $\xi_{\ell}^{N} = \mathcal{O}(\epsilon^{2N+2-\ell})$ for $\ell \geq 1$ [Hauck and Lowrie 2009]

Observations

For all three initial conditions,

- 1. $e^N = \mathcal{O}(\epsilon^{N+1})$
- 2. a) $\xi_0^N = \mathcal{O}(\epsilon^{2N})$ b) other $\xi_\ell^N = \mathcal{O}(\epsilon^{2N+2-\ell}) \Longrightarrow$

3.
$$f_{\ell}^{N} = \mathcal{O}(\epsilon^{\ell})$$

Super convergence is important, because the low order moments correspond to the important physical quantities.

Theoretical results: isotropic i.c.

Theoretical results (isotropic i.c.)

Theorem (Multiscale convergence)

Given isotropic initial condition $g \in H^1(dx)$, there exists an absolute constant λ_1 s.t.

$$||f-f^{N}||_{L^{2}(dxd\mu)}(t) \leq B(g)e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + C(\partial_{x}g)\sqrt{t}e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + D(g,N,t)\epsilon^{N+1},$$

Moreover,

$$||f_{\ell} - f_{\ell}^{N}||_{L^{2}(dx)}(t) \leq \begin{cases} C(\partial_{x}g)\sqrt{t}e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + E(g, N, 2, t)\epsilon^{2N}, & \ell = 0\\ C(\partial_{x}g)\sqrt{t}e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + E(g, N, \ell, t)\epsilon^{2N+2-\ell}, & 1 \leq \ell \leq N. \end{cases}$$

Notice, $\lambda_1 = \frac{1}{45}$; D(g, N, t) and $E(g, N, \ell, t)$ are positive and bounded for any t > 0, and exponentially decreasing w.r.t t for t big enough.²

²Chen, Z., & Hauck, C. (2019). "Multiscale convergence properties for spectral approximations of a model kinetic equation." *Mathematics of Computation*, 88(319), 2257-2293.

Errors of P_N methods

$$e^{\mathsf{N}} := f - f^{\mathsf{N}} = \eta + \xi$$

• Consistency error

$$\eta := f - \mathcal{P}(f) = \sum_{\ell=N+1}^{\infty} f_{\ell}(x,t) p_{\ell}(\mu)$$

• Stability error

$$\xi := \mathcal{P}(f) - f^N = \sum_{\ell=0}^N \xi_\ell(x,t) p_\ell(\mu)$$

with moment error

$$\xi_\ell = f_\ell - f_\ell^N.$$

Errors of P_N methods

$$e^{\mathsf{N}} := f - f^{\mathsf{N}} = \eta + \xi$$

• Consistency error

$$\eta := f - \mathcal{P}(f) = \sum_{\ell=N+1}^{\infty} f_{\ell}(x,t) p_{\ell}(\mu)$$

Stability error

$$\xi := \mathcal{P}(f) - f^N = \sum_{\ell=0}^N \xi_\ell(x, t) p_\ell(\mu)$$

with moment error

$$\xi_\ell = f_\ell - f_\ell^N.$$

The equation for ξ is

$$\epsilon \partial_t \xi = \mathcal{PT}\xi - a_N p_N \partial_x f_{N+1}.$$

Asymptotic estimates on f_{ℓ}

Lemma

Given isotropic initial condition $g \in L^2(dx)$, the coefficients $f_{\ell}(t,x)$ of the solution f^N to the P_N equations satisfy

$$|f_\ell||_{L^2(d imes)}(t) \leq B(g) e^{-rac{\lambda_1 t}{\epsilon^2}} + C(g,\ell,t) \; \epsilon^\ell, \qquad \ell \geq 0$$

Notice, $\lambda_1 = \frac{1}{45}$; $C(g, \ell, t)$ is bounded for any t > 0 and is monotonically decreasing w.r.t. t.

• Energy dissipation (periodic b.c.)

$$\partial_t \sum_{\ell=0}^{\infty} |f_{\ell}|^2 = -\frac{2}{\epsilon^2} \sum_{\ell=1}^{\infty} |f_{\ell}|^2 \le 0$$

• Energy dissipation (periodic b.c.)

$$\partial_t \sum_{\ell=0}^{\infty} |f_\ell|^2 = -\frac{2}{\epsilon^2} \sum_{\ell=1}^{\infty} |f_\ell|^2 \le 0$$

• Energy dissipation

$$\partial_t \sum_{\ell=0}^{\infty} |f_\ell|^2 = -\frac{2}{\epsilon^2} \sum_{\ell=1}^{\infty} |f_\ell|^2 \le 0$$

• Formal analysis

$$\epsilon \partial_t f_\ell + a_\ell \partial_x f_{\ell+1} + a_{\ell-1} \partial_x f_{\ell-1} + \frac{1}{\epsilon} f_\ell = 0$$

• Energy dissipation

$$\partial_t \sum_{\ell=0}^{\infty} |f_\ell|^2 = -\frac{2}{\epsilon^2} \sum_{\ell=1}^{\infty} |f_\ell|^2 \le 0$$

• Formal analysis - regularity

$$\epsilon \partial_t f_{\ell} + a_{\ell} \partial_x f_{\ell+1} + a_{\ell-1} \partial_x f_{\ell-1} + \frac{1}{\epsilon} f_{\ell} = 0$$
Some ideas

• Energy dissipation

$$\partial_t \sum_{\ell=0}^{\infty} |f_\ell|^2 = -\frac{2}{\epsilon^2} \sum_{\ell=1}^{\infty} |f_\ell|^2 \le 0$$

• Formal analysis - regularity

$$\epsilon \partial_t f_{\ell} + a_{\ell} \partial_x f_{\ell+1} + a_{\ell-1} \partial_x f_{\ell-1} + \frac{1}{\epsilon} f_{\ell} = 0$$

• Fourier Analysis: $\partial_x \rightarrow ik$

Some ideas

Energy dissipation

$$\partial_t \sum_{\ell=0}^{\infty} |f_\ell|^2 = -\frac{2}{\epsilon^2} \sum_{\ell=1}^{\infty} |f_\ell|^2 \le 0$$

• Formal analysis - regularity

$$\epsilon \partial_t f_{\ell} + a_{\ell} \partial_x f_{\ell+1} + a_{\ell-1} \partial_x f_{\ell-1} + \frac{1}{\epsilon} f_{\ell} = 0$$

• Fourier Analysis: $\partial_x \to ik$, and then for (ℓ, k) -spectral coefficients,

$$\partial_t \sum_{\ell=0}^{\infty} |f_{\ell,k}|^2 = -\frac{2}{\epsilon^2} \sum_{\ell=1}^{\infty} |f_{\ell,k}|^2,$$
$$\epsilon \partial_t f_{\ell,k} + a_\ell i k f_{\ell+1,k} + a_{\ell-1} i k f_{\ell-1,k} + \frac{1}{\epsilon} f_{\ell,k} = 0.$$

Some ideas

Energy dissipation

$$\partial_t \sum_{\ell=0}^{\infty} |f_\ell|^2 = -\frac{2}{\epsilon^2} \sum_{\ell=1}^{\infty} |f_\ell|^2 \le 0$$

• Formal analysis - regularity

$$\epsilon \partial_t f_{\ell} + a_{\ell} \partial_x f_{\ell+1} + a_{\ell-1} \partial_x f_{\ell-1} + \frac{1}{\epsilon} f_{\ell} = 0$$

• Fourier Analysis: $\partial_x \to ik$, and then for (ℓ, k) -spectral coefficients,

$$\partial_t \sum_{\ell=0}^{\infty} |f_{\ell,k}|^2 = -\frac{2}{\epsilon^2} \sum_{\ell=1}^{\infty} |f_{\ell,k}|^2,$$

$$\epsilon \partial_t f_{\ell,k} + a_\ell i k f_{\ell+1,k} + a_{\ell-1} i k f_{\ell-1,k} + \frac{1}{\epsilon} f_{\ell,k} =$$

Separate frequencies to control the growth rates mode by mode, and then sum up over frequencies k.

0.

- Prof. David Levermore points out the hypocoercivity.
- [Dolbeault, Mouhot and Schmeiser 2015] the exponential rate of convergence to the equilibrium (unscaled linear kinetic equations)
- Example: P_1 with k = 1:

- Prof. David Levermore points out the hypocoercivity.
- [Dolbeault, Mouhot and Schmeiser 2015] the exponential rate of convergence to the equilibrium (unscaled linear kinetic equations)
- Example: P_1 with k = 1:

- Prof. David Levermore points out the hypocoercivity.
- [Dolbeault, Mouhot and Schmeiser 2015] the exponential rate of convergence to the equilibrium (unscaled linear kinetic equations)
- Example: P_1 with k = 1:

• Rewrite energy dissipation as

$$\partial_t H_0^k(f) = -rac{2}{\epsilon^2} H_1^k(f).$$

$$H_j^k(u) := \frac{1}{2} \sum_{\ell=j}^{\infty} |u_{\ell,k}|^2$$

• Rewrite energy dissipation as

$$\partial_t H_0^k(f) = -\frac{2}{\epsilon^2} H_1^k(f).$$

• The modified energy is

$$(H_0^k+h_\gamma^k)(u)$$
 and $h_\gamma^k(u)=-rac{\gamma}{4a_0}\,{
m Im}(u_{0,k}u_{1,k}^*)$

is a real-valued compensating function

• Rewrite energy dissipation as

$$\partial_t H_0^k(f) = -\frac{2}{\epsilon^2} H_1^k(f).$$

$$(H_0^k+h_\gamma^k)(u)$$
 and $h_\gamma^k(u)=-rac{\gamma}{4a_0}\ln(u_{0,k}u_{1,k}^*)$

is a real-valued compensating function satisfying

- equivalence

$$(1-rac{\gamma}{2})H_0^k(u)\leq (H_0^k+h_\gamma^k)(u)\leq (1+rac{\gamma}{2})H_0^k(u);$$

- time derivative

$$\partial_t h_{\gamma}^k(u) \leq \gamma \left(\underbrace{-\frac{k}{16\epsilon} |u_{0,k}|^2}_{\text{"magic"}} + \underbrace{\left(\frac{k}{4\epsilon} + \frac{3}{8\epsilon^3 k}\right) |u_{1,k}|^2 + \frac{k}{5\epsilon} |u_{2,k}|^2}_{\text{"trade-off"}} \right)$$

• Method of modified energy (MME): $(u \leftarrow f)$

$$\partial_t \left(H^k_0(f) + h^k_\gamma(f)
ight) \leq -rac{2}{\epsilon^2} H^k_3(f) - \sum_{\ell=0}^2 c_{\gamma,\ell} |f_{\ell,k}|^2$$

where

$$c_{\gamma,0} = \frac{\gamma k}{16\epsilon}, \qquad c_{\gamma,1} = \frac{1}{\epsilon^2} - \frac{\gamma k}{4\epsilon} - \frac{3\gamma}{8\epsilon^3 k}, \qquad c_{\gamma,2} = \frac{1}{\epsilon^2} - \frac{\gamma k}{5\epsilon}.$$

For each k, choose suitable γ , and find positive lower bounds on $\{c_{\gamma,i}\}_{i=0}^2$.

• Method of modified energy (MME): $(u \leftarrow f)$

$$\partial_t \left(H_0^k(f)+h_\gamma^k(f)
ight)\leq -rac{2}{\epsilon^2}H_3^k(f)-\sum_{\ell=0}^2c_{\gamma,\ell}|f_{\ell,k}|^2$$

where

$$c_{\gamma,0}=rac{\gamma k}{16\epsilon}, \qquad c_{\gamma,1}=rac{1}{\epsilon^2}-rac{\gamma k}{4\epsilon}-rac{3\gamma}{8\epsilon^3 k}, \qquad c_{\gamma,2}=rac{1}{\epsilon^2}-rac{\gamma k}{5\epsilon}.$$

For each k, choose suitable γ , and find positive lower bounds on $\{c_{\gamma,i}\}_{i=0}^2$.

(i) High frequency: $(k\epsilon > 1/2)$

$$\gamma := \gamma^{ ext{high}} \simeq rac{1}{k\epsilon}$$

 $H_0^k(f)(t) < 6H_0^k(g) e^{-\frac{2\lambda_1 t}{\epsilon^2}}$

• Method of modified energy (MME): $(u \leftarrow f)$

$$\partial_t \left(H_0^k(f)+h_\gamma^k(f)
ight)\leq -rac{2}{\epsilon^2}H_3^k(f)-\sum_{\ell=0}^2c_{\gamma,\ell}|f_{\ell,k}|^2$$

where

$$c_{\gamma,0}=rac{\gamma k}{16\epsilon}, \qquad c_{\gamma,1}=rac{1}{\epsilon^2}-rac{\gamma k}{4\epsilon}-rac{3\gamma}{8\epsilon^3 k}, \qquad c_{\gamma,2}=rac{1}{\epsilon^2}-rac{\gamma k}{5\epsilon}$$

For each k, choose suitable γ , and find positive lower bounds on $\{c_{\gamma,i}\}_{i=0}^2$.

(i) High frequency: $(k\epsilon > 1/2)$ (ii) Low frequency: $(0 < k\epsilon \le \frac{1}{2})$ $\gamma := \gamma^{\text{high}} \simeq \frac{1}{k\epsilon}$ $\gamma := \gamma^{\text{low}} \simeq k\epsilon$ $H_0^k(f)(t) < 6H_0^k(g) e^{-\frac{2\lambda_1 t}{\epsilon^2}}$ $H_0^k(f)(t) < 6H_0^k(g) e^{-2\lambda_2 k^2 t}$

• Method of modified energy (MME): $(u \leftarrow f)$

(i) High frequency: $(k\epsilon > 1/2)$ $H_0^k(f)(t) < 6H_0^k(g) e^{-\frac{2\lambda_1 t}{\epsilon^2}}$

(ii) Low frequency: $(0 < k\epsilon \le \frac{1}{2})$

 $H_0^k(f)(t) < 6H_0^k(g) e^{-2\lambda_2 k^2 t}$

$H_0^k(f) := rac{1}{2} \sum_{\ell=0}^\infty f_{\ell,k} ^2$
\Downarrow
$f_{\ell,k}$
\Downarrow sum over k
f_ℓ

Initial estimate:

$$\begin{aligned} \|f_{\ell}\|_{L^{2}(d_{X})}^{2}(t) &\leq 12 \sum_{|k| \in > 1/2} H_{0}^{k}(g) e^{-\frac{2\lambda_{1}t}{\epsilon^{2}}} + \underbrace{\mathcal{C}(g, 0, t)^{2}}_{\text{low frequencies}} \\ \mathcal{C}(g, 0, t) &= \left[24 \max_{k>0} H_{0}^{k}(g) \sum_{k>0} e^{-2\lambda_{2}k^{2}t}\right]^{\frac{1}{2}}. \end{aligned}$$

with

• Method of modified energy (MME): $(u \leftarrow f)$

Initial estimate:

$$\|f_{\ell}\|_{L^{2}(dx)}^{2}(t) \leq 12 \sum_{|k| \epsilon > 1/2} H_{0}^{k}(g) e^{-\frac{2\lambda_{1}t}{\epsilon^{2}}} + C(g, 0, t)^{2}$$

• Next goal: f_{ℓ} is bounded by a finer estimate:

$$\|f_{\ell}\|_{L^{2}(dx)}^{2}(t) \leq \underbrace{12\sum_{|k| \epsilon > 1/2}^{\text{high frequencies}}}_{|k| \epsilon > 1/2} H_{0}^{k}(g)e^{-\frac{2\lambda_{1}t}{\epsilon^{2}}} + \underbrace{C(g, \ell, t)^{2}\epsilon^{2\ell}}_{\text{low frequencies}}$$

with

$$C(g, \ell, t) = \left[24 \max_{k>0} H_0^k(g) \sum_{k>0} (Ak)^{2\ell} e^{-2\lambda_2 k^2 t} \right]^{\frac{1}{2}}$$

Moment equations

$$\begin{cases} \epsilon \partial_t f_{0,k} + a_0 i k f_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t f_{\ell,k} + a_\ell i k f_{\ell+1,k} + a_{\ell-1} i k f_{\ell-1,k} + \frac{1}{\epsilon} f_{\ell,k} = 0, & \ell \ge 1. \end{cases}$$

For low frequency terms $(0 < |k| \epsilon \le \frac{1}{2})$: "Zoom-in procedure"

(0) For $n \ge 0$, $|f_{n,k}|(t) \le C_0^k \epsilon^0 k^0 e^{-\lambda_2 k^2 t}$.

Moment equations

$$\begin{cases} \epsilon \partial_t f_{0,k} + a_0 i k f_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t f_{\ell,k} + a_\ell i k f_{\ell+1,k} + a_{\ell-1} i k f_{\ell-1,k} + \frac{1}{\epsilon} f_{\ell,k} = 0, & \ell \ge 1. \end{cases}$$

For low frequency terms $(0 < |k| \epsilon \le \frac{1}{2})$: "Zoom-in procedure"

Moment equations

$$\begin{cases} \epsilon \partial_t f_{0,k} + a_0 i k f_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t f_{\ell,k} + a_\ell i k f_{\ell+1,k} + a_{\ell-1} i k f_{\ell-1,k} + \frac{1}{\epsilon} f_{\ell,k} = 0, & \ell \ge 1. \end{cases}$$

For low frequency terms $(0 < |k| \epsilon \le \frac{1}{2})$: "Zoom-in procedure"

Moment equations

 $\begin{cases} \epsilon \partial_t f_{0,k} + a_0 i k f_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t f_{\ell,k} + a_\ell i k f_{\ell+1,k} + a_{\ell-1} i k f_{\ell-1,k} + \frac{1}{\epsilon} f_{\ell,k} = 0, & \ell \ge 1. \end{cases}$

For low frequency terms $(0 < |k| \epsilon \le \frac{1}{2})$: "Zoom-in procedure"

Zoom-in estimates

Moment equations

$$\begin{cases} \epsilon \partial_t f_{0,k} + a_0 ikf_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t f_{\ell,k} + a_\ell ikf_{\ell+1,k} + a_{\ell-1} ikf_{\ell-1,k} + \frac{1}{\epsilon} f_{\ell,k} = 0, & \ell \ge 1. \end{cases}$$

1 k = 0 terms: $f_{0,0}(t) = f_{0,0}(0)$, $\epsilon \partial_t f_{\ell,0} + \frac{1}{\epsilon} f_{\ell,0} = 0$ for $\ell \ge 1$

- 2 High frequency terms, $|k|\epsilon > \frac{1}{2}$: decay exponentially $\mathcal{O}(e^{-\frac{\lambda_1 t}{\epsilon^2}})$
- 3 Low frequency terms, $0 < |k| \epsilon \leq \frac{1}{2}$: $f_{\ell,k}$ behaves like $\mathcal{O}(\epsilon^{\ell})$

Lemma (Asymptotic approximation)

Given isotropic initial condition $g \in L^2(dx)$, the coefficients $f_{\ell}(t,x)$ of the solution f^N to the P_N equations satisfy

$$||f_\ell||_{L^2(d\mathsf{x})}(t) \leq B(g)e^{-rac{\lambda_1t}{\epsilon^2}} + C(g,\ell,t)\epsilon^\ell, \qquad \ell\geq 0.$$

Consistency error

$$||\eta||^2_{L^2(d\mu d imes)}(t) = \sum_{\ell=N+1}^\infty ||f_\ell||^2_{L^2(d imes)}(t)$$

Lemma

Given isotropic initial condition $g \in L^2(dx)$,

$$||\eta||_{L^2(d\mu dx)}(t) \leq B(g)e^{-\frac{\lambda_1 t}{\epsilon^2}} + \sqrt{3}C(g, N+1, t)\epsilon^{N+1}.$$

• Stability error equation:

 $\begin{cases} \epsilon \partial_t \xi_{0,k} + a_0 ik \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_\ell ik \xi_{\ell+1,k} + a_{\ell-1} ik \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} ik \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N ik f_{N+1,k}, & \ell = N. \end{cases}$

• Stability error equation:

$$\begin{array}{ll} \epsilon \partial_t \xi_{0,k} + a_0 i k \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_\ell i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N i k f_{N+1,k}, & \ell = N. \end{array}$$

$$\partial_t \left(H_0^k(\xi) + h_\gamma^k(\xi)
ight) \leq -rac{1}{\epsilon^2} H_3^k(\xi) - \sum_{\ell=0}^2 c_{\gamma,\ell} |\xi_{\ell,k}|^2 + rac{k^2}{6} |f_{N+1,k}|^2$$

• Remark 1:

$$\partial_t \left(H^k_0(f) + h^k_\gamma(f)
ight) \leq -rac{2}{\epsilon^2} H^k_3(f) - \sum_{\ell=0}^2 c_{\gamma,\ell} |f_{\ell,k}|^2$$

• Stability error equation:

$$\begin{array}{ll} \epsilon \partial_t \xi_{0,k} + a_0 i k \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_\ell i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N i k f_{N+1,k}, & \ell = N. \end{array}$$

$$\partial_t \left(H_0^k(\xi) + h_\gamma^k(\xi)
ight) \leq -rac{1}{\epsilon^2} H_3^k(\xi) - \sum_{\ell=0}^2 c_{\gamma,\ell} |\xi_{\ell,k}|^2 + rac{k^2}{6} |f_{N+1,k}|^2$$

• Remark 1:

$$\partial_t \left(\mathcal{H}^k_0(f) + h^k_\gamma(f)
ight) \leq -rac{2}{\epsilon^2} \mathcal{H}^k_3(f) - \sum_{\ell=0}^2 c_{\gamma,\ell} |f_{\ell,k}|^2$$

• Remark 2:

 $\xi(0) = 0$

• Remark 3:

 $||f_{N+1}|| = \mathcal{O}(\epsilon^{N+1})$

• Stability error equation:

 $\begin{cases} \epsilon \partial_t \xi_{0,k} + a_0 i k \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_\ell i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N i k f_{N+1,k}, & \ell = N. \end{cases}$

$$\partial_t \left(H_0^k(\xi) + h_\gamma^k(\xi)
ight) \leq -rac{1}{\epsilon^2} H_3^k(\xi) - \sum_{\ell=0}^2 c_{\gamma,\ell} |\xi_{\ell,k}|^2 + rac{k^2}{6} |f_{N+1,k}|^2,$$

(i) High frequency: With estimate on source of the error coefficient system $|f_{N+1,k}|^2(t) \le 12H_0^k(g)\,e^{-\frac{2\lambda_1 t}{c^2}}$

$$\stackrel{\mathsf{MME}}{\Longrightarrow} \quad H_0^k(\xi)(t) \le 6t \, \mathbf{k}^2 H_0^k(\mathbf{g}) \, e^{-\frac{2\lambda_1 t}{\epsilon^2}} = 6t \, H_0^k(\partial_{\mathbf{x}} \mathbf{g}) \, e^{-\frac{2\lambda_1 t}{\epsilon^2}}.$$

• Stability error equation:

 $\begin{cases} \epsilon \partial_t \xi_{0,k} + a_0 i k \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_\ell i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N i k f_{N+1,k}, & \ell = N. \end{cases}$

$$\partial_t \left(H^k_0(\xi) + h^k_\gamma(\xi)
ight) \leq -rac{1}{\epsilon^2} H^k_3(\xi) - \sum_{\ell=0}^2 c_{\gamma,\ell} |\xi_{\ell,k}|^2 + rac{k^2}{6} |f_{N+1,k}|^2,$$

(ii) Low frequency: With estimate on source of the error coefficient system $|f_{N+1,k}|(t) \leq C_{N+1}^k \epsilon^{N+1} k^{N+1} e^{-\lambda_2 k^2 t}$

$$\stackrel{\mathsf{MME}}{\Longrightarrow} \quad H_0^k(\xi)(t) \leq \frac{t}{2} (C_{N+1}^k)^2 k^{2(N+2)} e^{-2\lambda_2 k^2 t} \, \epsilon^{2(N+1)}.$$

• Stability error equation:

 $\begin{cases} \epsilon \partial_t \xi_{0,k} + a_0 ik \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_\ell ik \xi_{\ell+1,k} + a_{\ell-1} ik \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} ik \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N ik f_{N+1,k}, & \ell = N. \end{cases}$

$$\partial_t \left(H_0^k(\xi) + h_\gamma^k(\xi)
ight) \leq -rac{1}{\epsilon^2} H_3^k(\xi) - \sum_{\ell=0}^2 c_{\gamma,\ell} |\xi_{\ell,k}|^2 + rac{k^2}{6} |f_{\mathsf{N}+1,k}|^2,$$

(i) High frequency: $H_0^k(\xi)(t) \le 6t H_0^k(\partial_x g) e^{-\frac{2\lambda_1 t}{e^2}}$ (ii) Low frequency: $H_0^k(\xi)(t) \le \frac{t}{2} [C_{N+1}^k]^2 k^{2(N+2)} e^{-2\lambda_2 k^2 t} e^{2(N+1)}$

Lemma

Given isotropic initial condition $g \in H^1(dx)$,

$$||\xi||_{L^2(d\mu d\mathbf{x})}(t) \leq C(\partial_{\mathbf{x}} g) \sqrt{t} e^{-\frac{\lambda_1 t}{\epsilon^2}} + \frac{\sqrt{t}}{\mathcal{A}} C(g, N+2, t) \epsilon^{N+1}.$$

P_N error

$$\begin{split} ||\eta||_{L^{2}(d\mu dx)}(t) &\leq B(g)e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + \sqrt{3}C(g, N+1, t)\epsilon^{N+1}. \\ &+ \\ ||\xi||_{L^{2}(d\mu dx)}(t) &\leq C(\partial_{x}g)\sqrt{t}e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + \frac{\sqrt{t}}{A}C(g, N+2, t)\epsilon^{N+1}. \\ &\downarrow \\ ||e^{N}||_{L^{2}(dxd\mu)}(t) &\leq \left(B(g) + C(\partial_{x}g)\sqrt{t}\right)e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + D(g, N, t)\epsilon^{N+1}, \end{split}$$

P_N error

 $||\eta||_{L^2(d\mu dx)}(t) \leq B(g)e^{-\frac{\lambda_1 t}{\epsilon^2}} + \sqrt{3}C(g, N+1, t)\epsilon^{N+1}.$ + $||\xi||_{L^2(d\mu dx)}(t) \leq C(\partial_x g)\sqrt{t}e^{-\frac{\lambda_1 t}{c^2}} + \frac{\sqrt{t}}{\Lambda}C(g, N+2, t)e^{N+1}.$ ∜ $||e^{N}||_{L^{2}(dxd\mu)}(t) \leq \left(B(g) + C(\partial_{x}g)\sqrt{t}\right)e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + D(g,N,t)\epsilon^{N+1},$ 2N+1 • 2N - • **Next**: moment errors $\xi_{\ell} = f_{\ell} - f_{\ell}^{N}$ N + 3 with more tricky "Zoom-in" techniques N+2 N+1 27 / 38

~N

Error equations:

$$\begin{cases} \epsilon \partial_t \xi_{0,k} + a_0 ik \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_l ik \xi_{\ell+1,k} + a_{\ell-1} ik \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} ik \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N ik f_{N+1,k}, & \ell = N. \end{cases}$$

For low frequency terms $(0 < |k| \epsilon \le \frac{1}{2})$: "Zoom-in procedure"

Error equations:

$$\begin{cases} \epsilon \partial_{t} \xi_{0,k} + a_{0} i k \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_{t} \xi_{\ell,k} + a_{\ell} i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_{t} \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_{N} i k f_{N+1,k}, & \ell = N. \end{cases}$$

For low frequency terms $(0 < |k| \epsilon \le \frac{1}{2})$: "Zoom-in procedure"

Error equations:

$$\begin{array}{ll} & \ell = 0; \\ & \ell \partial_t \xi_{0,k} + a_0 i k \xi_{1,k} = 0, & \ell = 0; \\ & \ell \partial_t \xi_{\ell,k} + a_l i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ & \ell \partial_t \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N i k f_{N+1,k}, & \ell = N. \end{array}$$

For low frequency terms $(0 < |k| \epsilon \le \frac{1}{2})$: "Zoom-in procedure"

Consider

• smaller system $\{\xi_{n,k}\}_{n=0}^{N-1}$ • source term $\xi_{N,k}$ Using MME gives, for $0 \le n \le N-1$, $|\xi_{n,k}|(t) \lesssim \epsilon^{N+2} k^{N+4} e^{-\lambda_2 k^2 t}$ In particular,

 $|\xi_{0,k}|(t)\lesssim\epsilon^{N+2}k^{N+4}e^{-\lambda_2k^2t}$

Error equations:

$$\begin{cases} \epsilon \partial_{t} \xi_{0,k} + a_{0} i k \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_{t} \xi_{\ell,k} + a_{\ell} i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_{t} \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_{N} i k f_{N+1,k}, & \ell = N. \end{cases}$$

For low frequency terms $(0 < |k| \epsilon \le \frac{1}{2})$: "Zoom-in procedure"

Error equations:

$$\begin{array}{ll} & \ell = 0; \\ & \ell \partial_t \xi_{0,k} + a_0 i k \xi_{1,k} = 0, & \ell = 0; \\ & \ell \partial_t \xi_{\ell,k} + a_l i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ & \ell \partial_t \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N i k f_{N+1,k}, & \ell = N. \end{array}$$

For low frequency terms $(0 < |k| \epsilon \le \frac{1}{2})$: "Zoom-in procedure"

Consider

• smaller system $\{\xi_{n,k}\}_{n=0}^{N-2}$ • source term $\xi_{N-1,k}$ Using MME gives, for $0 \le n \le N-2$, $|\xi_{n,k}|(t) \lesssim \epsilon^{N+3} k^{N+6} e^{-\lambda_2 k^2 t}$ In particular,

 $|\xi_{0,k}|(t)\lesssim\epsilon^{N+3}k^{N+6}e^{-\lambda_2k^2t}$

2N + 1 2N • •

N + 2

N+1 -

N + 3 0 0 0 0

Error equations:

$$\begin{cases} \epsilon \partial_t \xi_{0,k} + a_0 i k \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_l i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N i k f_{N+1,k}, & \ell = N. \end{cases}$$

For low frequency terms $(0 < |k| \epsilon \le \frac{1}{2})$: "Zoom-in procedure"

Error equations:

$$\begin{cases} \epsilon \partial_{t} \xi_{0,k} + a_{0} i k \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_{t} \xi_{\ell,k} + a_{\ell} i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_{t} \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_{N} i k f_{N+1,k}, & \ell = N. \end{cases}$$

For low frequency terms $(0 < |k| \epsilon \le \frac{1}{2})$: "Zoom-in procedure"

For n = 1,
Moment errors

• Error equations:

 $\begin{cases} \epsilon \partial_t \xi_{0,k} + a_0 ik \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_l ik \xi_{\ell+1,k} + a_{\ell-1} ik \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} ik \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N ik f_{N+1,k}, & \ell = N. \end{cases}$

1 k=0 terms: $\xi_{\ell,0}=0$ for $0\leq\ell\leq N$

2 High frequency terms: decay exponentially $\mathcal{O}(e^{-\frac{\lambda_1 r}{\epsilon^2}})$

3 Low frequency terms: method of induction + MME $\xi_{0,k} \sim \mathcal{O}(\epsilon^{2N}), \ \xi_{\ell,k} \sim \mathcal{O}(\epsilon^{2N+2-\ell})$

Theorem (Superconvergence in moments)

Given $g \in H^1(dx)$, there exists an absolute constant λ_1 s.t.

$$||\xi_{\ell}||_{L^{2}(dx)}(t) \leq \begin{cases} C(\partial_{x}g)\sqrt{t}e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + E(g,N,2,t)\epsilon^{2N}, & \ell = 0\\ C(\partial_{x}g)\sqrt{t}e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + E(g,N,\ell,t)\epsilon^{2N+2-\ell}, & 1 \leq \ell \leq N. \end{cases}$$

Benefits from P_N to P_{N+1}

In main theorems,

$$||e^{N}||_{L^{2}(dxd\mu)}(t) \leq B(g)e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + C(\partial_{x}g)\sqrt{t}e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + D(g,N,t)\epsilon^{N+1}.$$

$$||\xi_{\ell}^{\mathsf{N}}||_{L^{2}(d_{\mathsf{X}})}(t) \leq \begin{cases} C(\partial_{\mathsf{X}}g)\sqrt{t}e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + \mathsf{E}(g,\mathsf{N},2,t)\epsilon^{2\mathsf{N}}, & \ell = 0\\ C(\partial_{\mathsf{X}}g)\sqrt{t}e^{-\frac{\lambda_{1}t}{\epsilon^{2}}} + \mathsf{E}(g,\mathsf{N},\ell,t)\epsilon^{2\mathsf{N}+2-\ell}, & 1 \leq \ell \leq \mathsf{N}. \end{cases}$$

Observation

Theory

1. $e^{N} = \mathcal{O}(e^{N+1})$ 2. a) $\xi_{0}^{N} = \mathcal{O}(e^{2N})$ b) other $\xi_{\ell}^{N} = \mathcal{O}(e^{2N+2-\ell})$ 1. $e^N \leq D(g, N, t)\epsilon^{N+1}$ 2. a) $\xi_0^N \leq E(g, N, 2, t)\epsilon^{2N}$ b) $\xi_\ell^N \leq E(g, N, \ell, t)\epsilon^{(2N+2-\ell)}$ Using the error estimates to indicate the benefit from P_N to P_{N+1} :

$$\frac{||e^{N+1}||}{||e^{N}||} \sim \frac{D(g, N+1, t)\epsilon^{N+2}}{D(g, N, t)\epsilon^{N+1}} = \frac{D(g, N+1, t)}{D(g, N, t)}\epsilon = \mathcal{O}(\epsilon),$$

if D(g, N, t) does NOT grow fast w.r.t. N. Similarly,

$$rac{||\xi_\ell^{N+1}||}{||\xi_\ell^N||}\sim rac{E(g,N+1,\ell,t)}{E(g,N,\ell,t)}\epsilon^2=\mathcal{O}(\epsilon^2).$$

Observation

Theory

1. $e^N = \mathcal{O}(\epsilon^{N+1})$ 2. a) $\xi_0^N = \mathcal{O}(\epsilon^{2N})$ b) other $\xi_\ell^N = \mathcal{O}(\epsilon^{2N+2-\ell})$ 1. $e^N \leq D(g, N, t)\epsilon^{N+1}$ 2. a) $\xi_0^N \leq E(g, N, 2, t)\epsilon^{2N}$ b) $\xi_\ell^N \leq E(g, N, \ell, t)\epsilon^{(2N+2-\ell)}$

Benefits of increasing N: $||e^{N}||_{L^{2}(d\mu dx)}$

 $\frac{\|e^{N+1}\|}{\|e^N\|\epsilon} < 5$

Errors of P_N equations, $N = 1, \cdots, 40$.

Benefits of increasing N: $||\xi_0^N||_{L^2(dx)}$

Errors of f_0^N of P_N equations, $N = 1, \cdots, 40$.

Benefits of increasing N: $||\xi_1^N||_{L^2(dx)}$

Errors of f_1^N of P_N equations, $N = 1, \cdots, 40$.

Benefits of increasing N: $||\xi_2^N||_{L^2(dx)}$

Errors of f_2^N of P_N equations, $N = 1, \cdots, 40$.

The sum of the series

All these constants in the estimates are multiples of the following sum

$$a_n(s):=\sum_{k>0}\left\{k^{2n}e^{-k^2s}\right\},$$

with some n, $s = 2\lambda_2 t$ and the constant λ_2 , which has the same **step behavior** as in the previous numerical benefits, and has the same growth rate as function

$$a_n(s)\sim rac{n!}{s^n},$$

and

$$a_{n+1}(s)/a_n(s) \sim \frac{(n+1)!}{s^{n+1}} \bigg/ \frac{n!}{s^n} = \frac{n+1}{s}$$

We also have some analytic results to support this numerical observation.

The sum of the series

Results: anisotropic i.c.

Super convergence properties relate to the highest non-zero moment of initial condition g. Consider

$$g(x,\mu)=\sum_{\ell=0}^{m_0}g_\ell(x)p_\ell(\mu).$$

<i>m</i> 0		numerical		theoretical
$m_0 = 0, 1$ $2 \le m_0 \le N + 1$		$\min\{2N + \ell, 2N + 2 - \ell\}$ $\min\{2N + 2 - m_0 + \ell, 2N + 2 - \ell\}$		$\min\{2N + \ell, 2N + 2 - \ell\}$ $\min\{2N + 1 - m_0 + \ell, 2N + 2 - \ell\}$
$m_0 \ge N+1$		$\min\{N+1+\ell, 2N+2-\ell\}$		$\min\{N + \ell, 2N + 2 - \ell\}$

Table: Numerical and theoretical orders of convergence rates for the ℓ^{th} moment.

<i>m</i> 0		numerical	I	theoretical
$m_0 = 0, 1$ $2 \le m_0 < N + 1$ $m_0 \ge N + 1$		$ \min \{ 2N + \ell, 2N + 2 - \ell \} \\ \min \{ 2N + 2 - m_0 + \ell, 2N + 2 - \ell \} \\ \min \{ N + 1 + \ell, 2N + 2 - \ell \} $		$ \min \{ 2N + \ell, 2N + 2 - \ell \} \\ \min \{ 2N + 1 - m_0 + \ell, 2N + 2 - \ell \} \\ \min \{ N + \ell, 2N + 2 - \ell \} $

Table: Numerical and theoretical orders of convergence rates for the ℓ^{th} moment.

Left: $m_0 = 0$ or 1; right: $m_0 = 2$.

<i>m</i> 0		numerical	theoretical
$m_0 = 0, 1$ $2 \le m_0 < N + 1$ $m_0 \ge N + 1$		$ \min \{ 2N + \ell, 2N + 2 - \ell \} \\ \min \{ 2N + 2 - m_0 + \ell, 2N + 2 - \ell \} \\ \min \{ N + 1 + \ell, 2N + 2 - \ell \} $	$ \min \{ 2N + \ell, 2N + 2 - \ell \} \\ \min \{ 2N + 1 - m_0 + \ell, 2N + 2 - \ell \} \\ \min \{ N + \ell, 2N + 2 - \ell \} $

Table: Numerical and theoretical orders of convergence rates for the ℓ^{th} moment.

 $2 \le m_0 < N + 1$ Left: m_0 even; right: m_0 odd.

<i>m</i> 0	numerical	theoretical
$m_0 = 0, 1$ $2 \le m_0 < N + 1$ $m_0 \ge N + 1$	$ \min \{ 2N + \ell, 2N + 2 - \ell \} \\ \min \{ 2N + 2 - m_0 + \ell, 2N + 2 - \ell \} \\ \min \{ N + 1 + \ell, 2N + 2 - \ell \} $	$ \min\{2N + \ell, 2N + 2 - \ell\} \\ \min\{2N + 1 - m_0 + \ell, 2N + 2 - \ell\} \\ \min\{N + \ell, 2N + 2 - \ell\} $

Table: Numerical and theoretical orders of convergence rates for the ℓ^{th} moment.

 $m_0 \ge N + 1$ Left: N odd; right: N even.

Summary

- A multiscale convergence property for the error of P_N method, which is $\mathcal{O}(\epsilon^{N+1})$, for linear kinetic equations with isotropic scattering, no absorption, no source, and isotropic initial condition.
- Super-convergence rate in the spectral approximation for each moment with P_N method.
- Asymptotic estimates for moments, i.e., f_{ℓ} and f_{ℓ}^{N} are $\mathcal{O}(\epsilon^{\ell})$.
- Future work:
 - optimal convergence rate for cases with anisotropic initial condtions
 - realistic domain with boundary conditions
 - non-zero absorption and sources
 - spatially dependent scattering and anisotropic scattering
 - alternative angular discretizations and nonlinear systems
 - error estimate for multiscale hybrid methods

Backup slides

Method of modified energy (MME): (u \le f)

$$\partial_t \left(H_0^k(f)+h_\gamma^k(f)
ight)\leq -rac{2}{\epsilon^2}H_3^k(f)-\sum_{\ell=0}^2c_{\gamma,\ell}|f_{\ell,k}|^2$$

where

$$c_{\gamma,0}=rac{\gamma k}{16\epsilon}, \qquad c_{\gamma,1}=rac{1}{\epsilon^2}-rac{\gamma k}{4\epsilon}-rac{3\gamma}{8\epsilon^3 k}, \qquad c_{\gamma,2}=rac{1}{\epsilon^2}-rac{\gamma k}{5\epsilon}.$$

For each k, choose suitable γ , and find positive lower bounds on $\{c_{\gamma,i}\}_{i=0}^2$.

Method of modified energy (MME): (u \le f)

$$\partial_t \left(H_0^k(f)+h_\gamma^k(f)
ight)\leq -rac{2}{\epsilon^2}H_3^k(f)-\sum_{\ell=0}^2c_{\gamma,\ell}|f_{\ell,k}|^2$$

where

$$c_{\gamma,0}=rac{\gamma k}{16\epsilon}, \qquad c_{\gamma,1}=rac{1}{\epsilon^2}-rac{\gamma k}{4\epsilon}-rac{3\gamma}{8\epsilon^3 k}, \qquad c_{\gamma,2}=rac{1}{\epsilon^2}-rac{\gamma k}{5\epsilon}.$$

For each k, choose suitable γ , and find positive lower bounds on $\{c_{\gamma,i}\}_{i=0}^2$.

(i) High frequency: $(k\epsilon > 1/2)$

$$\gamma := \gamma^{\text{high}} := \frac{16}{29} \frac{1}{k\epsilon} < \frac{32}{29}$$

Then

equival

integrate in time

$$egin{aligned} &\partial_t \left(\mathcal{H}_0^k(f) + h_\gamma^k(f)
ight) \leq -rac{2\lambda_1}{\epsilon^2} \left(\mathcal{H}_0^k(f) + h_\gamma^k(f)
ight) \ & \left(\mathcal{H}_0^k(f) + h_\gamma^k(f)
ight)(t) \leq \mathrm{e}^{-rac{2\lambda_1 t}{\epsilon^2}} \left(\mathcal{H}_0^k(g) + h_\gamma^k(g)
ight) \ & \mathcal{H}_0^k(f)(t) < 6\mathcal{H}_0^k(g) \, \mathrm{e}^{-rac{2\lambda_1 t}{\epsilon^2}}. \end{aligned}$$

Method of modified energy (MME): (u \le f)

$$\partial_t \left(H_0^k(f)+h_\gamma^k(f)
ight)\leq -rac{2}{\epsilon^2}H_3^k(f)-\sum_{\ell=0}^2c_{\gamma,\ell}|f_{\ell,k}|^2$$

where

$$c_{\gamma,0}=rac{\gamma k}{16\epsilon}, \qquad c_{\gamma,1}=rac{1}{\epsilon^2}-rac{\gamma k}{4\epsilon}-rac{3\gamma}{8\epsilon^3 k}, \qquad c_{\gamma,2}=rac{1}{\epsilon^2}-rac{\gamma k}{5\epsilon}.$$

For each k, choose suitable γ , and find positive lower bounds on $\{c_{\gamma,i}\}_{i=0}^2$.

(ii) Low frequency: $(0 < k\epsilon \le \frac{1}{2})$

$$\gamma := \gamma^{\text{low}} := \frac{64}{29} k\epsilon \le \frac{32}{29}.$$

Then

integrate in time

equivalence

$$\begin{aligned} \partial_t \left(H_0^k(f) + h_\gamma^k(f) \right) &\leq -\frac{2\lambda_2}{45} k^2 \left(H_0^k(f) + h_\gamma^k(f) \right) \\ \left(H_0^k(f) + h_\gamma^k(f) \right)(t) &\leq e^{-2\lambda_2 k^2 t} \left(H_0^k(g) + h_\gamma^k(g) \right) \\ H_0^k(f)(t) &< 6H_0^k(g) e^{-2\lambda_2 k^2 t}. \end{aligned}$$

Method of modified energy (MME): (u \le f)

(i) High frequency: $(k\epsilon > 1/2)$ $H_0^k(f)(t) < 6H_0^k(g) e^{-\frac{2\lambda_1 t}{\epsilon^2}}$

(ii) Low frequency: $(0 < k\epsilon \le \frac{1}{2})$ $H_0^k(f)(t) < 6H_0^k(g) e^{-2\lambda_2 k^2 t}$

$H_0^k(f) := rac{1}{2} \sum_{\ell=0}^\infty f_{\ell,k} ^2$
\Downarrow
$f_{\ell,k}$
\Downarrow sum over k
f_ℓ

Initial estimate:

$$\begin{aligned} \|f_{\ell}\|_{L^{2}(d_{X})}^{2}(t) &\leq 12\sum_{|k| \in > 1/2}^{\text{high frequencies}} H_{0}^{k}(g)e^{-\frac{2\lambda_{1}t}{\epsilon^{2}}} + \underbrace{\mathcal{C}(g,0,t)^{2}}_{\text{low frequencies}} \\ \mathcal{C}(g,0,t) &= \left[24\max_{k>0}H_{0}^{k}(g)\sum_{k>0}e^{-2\lambda_{2}k^{2}t}\right]^{\frac{1}{2}}. \end{aligned}$$

with

• Method of modified energy (MME): $(u \leftarrow f)$

Initial estimate:

$$\|f_{\ell}\|_{L^{2}(dx)}^{2}(t) \leq 12 \sum_{|k| \epsilon > 1/2} H_{0}^{k}(g) e^{-\frac{2\lambda_{1}t}{\epsilon^{2}}} + C(g, 0, t)^{2}$$

• Next goal: f_{ℓ} is bounded by a finer estimate:

$$\|f_{\ell}\|_{L^{2}(dx)}^{2}(t) \leq \underbrace{12\sum_{|k| \epsilon > 1/2}^{\text{high frequencies}}}_{|k| \epsilon > 1/2} H_{0}^{k}(g)e^{-\frac{2\lambda_{1}t}{\epsilon^{2}}} + \underbrace{C(g, \ell, t)^{2}\epsilon^{2\ell}}_{\text{low frequencies}}$$

with

$$C(g, \ell, t) = \left[24 \max_{k>0} H_0^k(g) \sum_{k>0} (Ak)^{2\ell} e^{-2\lambda_2 k^2 t} \right]^{\frac{1}{2}}$$

• Stability error equation:

$$\begin{cases} \epsilon \partial_t \xi_{0,k} + a_0 i k \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_\ell i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N i k f_{N+1,k}, & \ell = N. \end{cases}$$

• Stability error equation:

 $\left\{ \begin{array}{ll} \epsilon \partial_t \xi_{0,k} + a_0 i k \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_\ell i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N i k f_{N+1,k}, & \ell = N. \end{array} \right.$

$$\begin{aligned} \partial_t \sum_{\ell=0}^{N} |\xi_{\ell,k}|^2 + \frac{2}{\epsilon^2} \sum_{\ell=1}^{N} |\xi_{\ell,k}|^2 &\leq \frac{a_N |k|}{\epsilon} |\xi_{N,k}| |f_{N+1,k}| \\ &\leq \frac{1}{2\epsilon^2} |\xi_{N,k}|^2 + \frac{k^2}{6} |f_{N+1,k}|^2 \end{aligned}$$

• Stability error equation:

$$\begin{cases} \epsilon \partial_t \xi_{0,k} + a_0 ik \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_\ell ik \xi_{\ell+1,k} + a_{\ell-1} ik \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} ik \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N i k f_{N+1,k}, & \ell = N. \end{cases}$$

$$\partial_t \sum_{\ell=0}^N |\xi_{\ell,k}|^2 + \frac{2}{\epsilon^2} \sum_{\ell=1}^N |\xi_{\ell,k}|^2 \le \frac{a_N |k|}{\epsilon} |\xi_{N,k}| |f_{N+1,k}| \le \frac{1}{2\epsilon^2} |\xi_{N,k}|^2 + \frac{k^2}{6} |f_{N+1,k}|^2$$

$$\begin{aligned} \partial_t \left(H_0^k(\xi) + h_{\gamma}^k(\xi) \right) &\leq -\frac{2}{\epsilon^2} H_3^k(\xi) - \sum_{\ell=0}^2 c_{\gamma,\ell} |\xi_{\ell,k}|^2 + \frac{1}{\epsilon^2} \frac{1}{2} |\xi_{N,k}|^2 + \frac{k^2}{6} |f_{N+1,k}|^2 \\ &\leq -\frac{1}{\epsilon^2} H_3^k(\xi) - \sum_{\ell=0}^2 c_{\gamma,\ell} |\xi_{\ell,k}|^2 + \frac{k^2}{6} |f_{N+1,k}|^2, \end{aligned}$$

1. for *f*:

$$\partial_t \left(H^k_0(f) + h^k_\gamma(f)
ight) \leq -rac{2}{\epsilon^2} H^k_3(f) - \sum_{\ell=0}^2 c_{\gamma,\ell} |f_{\ell,k}|^2$$

2. $\xi_{\ell,k}(0) = 0$

• Stability error equation:

 $\begin{cases} \epsilon \partial_t \xi_{0,k} + a_0 i k \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_\ell i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N i k f_{N+1,k}, & \ell = N. \end{cases}$

$$\partial_t \left(H_0^k(\xi) + h_\gamma^k(\xi)
ight) \leq -rac{1}{\epsilon^2} H_3^k(\xi) - \sum_{\ell=0}^2 c_{\gamma,\ell} |\xi_{\ell,k}|^2 + rac{k^2}{6} |f_{N+1,k}|^2,$$

(i) High frequency: With estimate on source of the error coefficient system

$$\frac{k^2}{6}|f_{N+1,k}|^2(t) \le 2k^2 H_0^k(g) \, e^{-\frac{2\lambda_1 t}{\epsilon^2}}$$

$$\stackrel{\text{MME}}{\Longrightarrow} \quad H_0^k(\xi)(t) \le 6t \, k^2 H_0^k(g) \, e^{-\frac{2\lambda_1 t}{\epsilon^2}}$$
$$= 6t \, H_0^k(\partial_x g) \, e^{-\frac{2\lambda_1 t}{\epsilon^2}}.$$

• Stability error equation:

 $\begin{cases} \epsilon \partial_t \xi_{0,k} + a_0 i k \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_\ell i k \xi_{\ell+1,k} + a_{\ell-1} i k \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} i k \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N i k f_{N+1,k}, & \ell = N. \end{cases}$

$$\partial_t \left(H_0^k(\xi) + h_\gamma^k(\xi)
ight) \leq -rac{1}{\epsilon^2} H_3^k(\xi) - \sum_{\ell=0}^2 c_{\gamma,\ell} |\xi_{\ell,k}|^2 + rac{k^2}{6} |f_{N+1,k}|^2,$$

(ii) Low frequency: With estimate on source of the error coefficient system $|f_{N+1,k}|(t) \leq C_{N+1}^k \epsilon^{N+1} k^{N+1} e^{-\lambda_2 k^2 t}$

$$\stackrel{\text{MME}}{\Longrightarrow} \quad \left(H_0^k(\xi) + h_{\gamma}^k(\xi) \right)(t) \le \frac{k^2}{6} e^{-2\lambda_2 k^2 t} \int_0^t e^{2\lambda_2 k^2 s} |f_{N+1,k}|^2 \, ds \\ \le \frac{t}{6} (C_{N+1}^k)^2 k^{2(N+2)} e^{-2\lambda_2 k^2 t} \, \epsilon^{2(N+1)}.$$

• Stability error equation:

 $\begin{cases} \epsilon \partial_t \xi_{0,k} + a_0 ik \xi_{1,k} = 0, & \ell = 0; \\ \epsilon \partial_t \xi_{\ell,k} + a_\ell ik \xi_{\ell+1,k} + a_{\ell-1} ik \xi_{\ell-1,k} + \frac{1}{\epsilon} \xi_{\ell,k} = 0, & 1 \le \ell \le N-1; \\ \epsilon \partial_t \xi_{N,k} + a_{N-1} ik \xi_{N-1,k} + \frac{1}{\epsilon} \xi_{N,k} = -a_N ik f_{N+1,k}, & \ell = N. \end{cases}$

$$\partial_t \left(H_0^k(\xi) + h_\gamma^k(\xi)
ight) \leq -rac{1}{\epsilon^2} H_3^k(\xi) - \sum_{\ell=0}^2 c_{\gamma,\ell} |\xi_{\ell,k}|^2 + rac{k^2}{6} |f_{N+1,k}|^2,$$

(i) High frequency: $H_0^k(\xi)(t) \le 6t H_0^k(\partial_x g) e^{-\frac{2\lambda_1 t}{e^2}}$ (ii) Low frequency: $H_0^k(\xi)(t) \le \frac{t}{2} [C_{N+1}^k]^2 k^{2(N+2)} e^{-2\lambda_2 k^2 t} e^{2(N+1)}$

Lemma

Given isotropic initial condition $g \in H^1(dx)$,

$$||\xi||_{L^2(d\mu d\mathbf{x})}(t) \leq C(\partial_{\mathbf{x}}g)\sqrt{t}e^{-\frac{\lambda_1 t}{\epsilon^2}} + \frac{\sqrt{t}}{A}C(g, N+2, t)\epsilon^{N+1}.$$

Benefits of increasing N: $||e^{N}||_{L^{2}(d\mu dx)}$

Errors of P_N equations, $N = 1, \cdots, 40$.

Benefits of increasing N: $||\xi_0^N||_{L^2(dx)}$

Errors of f_0^N of P_N equations, $N = 1, \dots, 40$.

Benefits of increasing N: $||\xi_1^N||_{L^2(dx)}$

Errors of f_1^N of P_N equations, $N = 1, \dots, 40$.

Benefits of increasing N: $||\xi_2^N||_{L^2(dx)}$

Errors of f_2^N of P_N equations, $N = 1, \dots, 40$.