Third order Maximum-Principle-Satisfying Direct DG methods for convection diffusion equations on unstructured triangular mesh

Zheng Chen

chenz1@ornl.gov

CAM Semiar University of Tennessee March 2, 2016

Z.Chen (CAM, ORNL)

3rd order MPS DDG for convection diffusion

3-2-16 1 / 31

Object: design high order Maximum-Principle-Satisfying DG method

$$u_t + \nabla \cdot F(u) - \nabla \cdot (A(u)\nabla u) = 0$$

▶ PDE (continuous): The solution satisfies the maximum principle:

$$m \leq u(x, y, t) \leq M,$$
 $(x, y) \in \Omega, t > 0,$

where, m and M are the minimum and maximum of the initial and boundary data.

Schemes (discrete): We expect the numerical solution to satisfy the discrete maximum principle at all time level tⁿ:

$$m \leq u_K^n(x,y) \leq M,$$
 $(x,y) \in K \in \mathcal{T}_h \subseteq \Omega.$

- Strong stability result in the L^{∞} sense
- Consistency to physical meanings (e.g. preserve positivity of density profile)
 Consistency to physical meanings (e.g. preserve positivity of density National Laboratory

M-P-S high order DG methods for hyperbolic PDEs

 $u_t + \nabla \cdot F(u) = 0 \implies m \le u_K^n(x, y) \le M$

For convection term:

M-P-S DGM on conservation laws

- X. Zhang and C.-W. Shu (2010a). "On maximum-principle-satisfying high order schemes for scalar conservation laws". In: J. Comput. Phys.
- X. Zhang and C.-W. Shu (2011). "Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments". In: Proc. R. Soc. A

X. Zhang, Y. Xia, and C.-W. Shu (2012). "Maximum-principle-satisfying and positivity-preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes". In: J. Sci. Comput.

$$u_t + \nabla \cdot F(u) - \nabla \cdot (A(u)\nabla u) = 0 \implies m \le u_K^n(x, y) \le M$$

For diffusion term:

- X. Zhang Y. Zhang and C.-W. Shu (2013). "Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes". In: J. Comput. Phys.
- Z. Chen, H. Huang, and J. Yan (2016). "Third order maximum-principle-satisfying direct discontinuous Galerkin methods for time dependent convection diffusion equations on unstructured triangular meshes". In: Journal of Computational Physics 308, pp. 198–217

Outline

Reviews

- Discontinuous Galerkin methods
- General framework of M-P-S schemes
- Introduction to Direct DG method and its variations

2 M-P-S DDG schemes for triangular mesh

- Methods on rectangular mesh
- New ideas designed for unstructured mesh
- Extension to nonlinear diffusion equations
- Algorithm

3 Numerical examples

Conclusions and future works

Joint work with: Jue Yan (Iowa State University) Hongying Huang (Zhejiang Ocean University, China)

Outline

Reviews

• Discontinuous Galerkin methods

- General framework of M-P-S schemes
- Introduction to Direct DG method and its variations

2 M-P-S DDG schemes for triangular mesh

- Methods on rectangular mesh
- New ideas designed for unstructured mesh
- Extension to nonlinear diffusion equations
- Algorithm

3 Numerical examples

4 Conclusions and future works

Review of discontinuous Galerkin (DG) methods

$$\begin{array}{c} u_{t} + f(u)_{x} = 0 & \Longrightarrow & \int_{I_{j}} u_{t} v \, dx + \int_{I_{j}} f(u)_{x} v \, dx = 0 \\ \hline \\ \hline \\ Integration \ by \ part & \\ \hline \\ f_{l_{j}} u_{t} v \, dx - \int_{I_{j}} f(u) v_{x} \, dx + [f(u)v] \Big|_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} = 0 \\ \hline \\ \hline \\ DG \ solution: & \underbrace{u_{j-1}}_{x_{j-\frac{3}{2}}} & \underbrace{f_{j+\frac{1}{2}}}_{y_{j+\frac{1}{2}}} & \underbrace{u_{j+1}}_{I_{j+1}} & \underbrace{u_{j+1}}_{x_{j+\frac{3}{2}}} \\ \hline \\ \int_{I_{j}} u_{t} v \, dx - \int_{I_{j}} f(u) v_{x} \, dx + \widehat{f}_{j+\frac{1}{2}} v_{j+\frac{1}{2}}^{-} - \widehat{f}_{j-\frac{1}{2}} v_{j-\frac{1}{2}}^{+} = 0 \\ \hline \end{array}$$

Z.Chen (CAM, ORNL)

3rd order MPS DDG for convection diffusion

3-2-16 5 / 31

RIDGE

Outline

Reviews

- Discontinuous Galerkin methods
- General framework of M-P-S schemes
- Introduction to Direct DG method and its variations

2 M-P-S DDG schemes for triangular mesh

- Methods on rectangular mesh
- New ideas designed for unstructured mesh
- Extension to nonlinear diffusion equations
- Algorithm
- 3 Numerical examples
- 4 Conclusions and future works

Major steps to prove M-P-S schemes

Assumption:

$$|u(x,t^n) - u_j^n(x)| \le C\Delta x^3$$
 and $m \le u_j^n(x) \le M$, $orall x \in I_j$

► Step 1: evolve in time once and estimate the solution average $\overline{u}_{j}^{n+1} = \frac{1}{\Delta x_{j}} \int_{I_{j}} u_{j}^{n+1}(x) dx$ $\left(\overline{m \leq \overline{u}_{j}^{n+1} \leq M}\right) \qquad \longleftarrow \qquad \text{difficult!}$

Step 2: modify the solution by adding a limiter to make sure

Z.Chen (CAM, ORNL)

3rd order MPS DDG for convection diffusion

Difficulty to obtain high order M-P-S for diffusion equation

CAK RIDGE

3-2-16 7 / 31

Outline

Reviews

- Discontinuous Galerkin methods
- General framework of M-P-S schemes
- Introduction to Direct DG method and its variations

2 M-P-S DDG schemes for triangular mesh

- Methods on rectangular mesh
- New ideas designed for unstructured mesh
- Extension to nonlinear diffusion equations
- Algorithm
- 3 Numerical examples
- 4 Conclusions and future works

Direct DG (DDG) method as a diffusion solver Parabolic

$$\boxed{u_t = u_{xx}} \Longrightarrow \int_{I_j} u_t v \, dx + \int_{I_j} u_x v_x \, dx - (\widehat{u_x})_{j+\frac{1}{2}} v_{j+\frac{1}{2}}^- + (\widehat{u_x})_{j-\frac{1}{2}} v_{j-\frac{1}{2}}^+ = 0$$

*H. Liu and J. Yan (2009). "The Direct Discontinuous Galerkin (DDG) Methods for Diffusion Problems". In: SIAM J. Numer. Anal.

DDG method with interface correction

$$\int_{I_j} u_t v \, dx + \int_{I_j} u_x v_x \, dx - (\widehat{u_x} v) \Big|_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} + \boxed{\sigma \left([u](\widetilde{v_x})_{j+\frac{1}{2}} + [u](\widetilde{v_x})_{j-\frac{1}{2}} \right)} = 0$$

- ► DDG: $\sigma = 0$, $\widehat{u_x} = \beta_0 \frac{[u]}{\Delta x} + \overline{u_x} + \beta_1 \Delta x [u_{xx}] + \beta_3 \Delta x^3 [u_{xxxx}] + \cdots$
- DDG with interface correction: $\sigma = 1$,

$$\begin{cases} \widehat{u_x} = \beta_0 \frac{[u]}{\Delta x} + \overline{u_x} + \beta_1 \Delta x [u_{xx}] \\ \widetilde{v_x} = \overline{v_x} \end{cases}$$

CAK RIDGE

Z.Chen (CAM, ORNL)

Image: Image:

3-2-16 9 / 31

DDG method with interface correction

$$\int_{I_{j}} u_{t} v \, dx + \int_{I_{j}} u_{x} v_{x} \, dx - \left(\widehat{u_{x}} v\right) \Big|_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} + \left[\sigma\left([u](\widetilde{v_{x}})_{j+\frac{1}{2}} + [u](\widetilde{v_{x}})_{j-\frac{1}{2}}\right) \right] = 0$$

- ► DDG: $\sigma = 0$, $\widehat{u}_x = \beta_0 \frac{[u]}{\Delta x} + \overline{u_x} + \beta_1 \Delta x [u_{xx}] + \beta_3 \Delta x^3 [u_{xxx}] + \cdots$
- DDG with interface correction: $\sigma = 1$,

$$\begin{cases} \widehat{u_x} = \beta_0 \frac{[u]}{\Delta x} + \overline{u_x} + \beta_1 \Delta x [u_{xx}] \\ \widetilde{v_x} = \overline{v_x} \end{cases}$$

CAK RIDGE

Z.Chen (CAM, ORNL)

Image: Image:

3-2-16 9 / 31

Solution average evolution

Take v = 1

$$\frac{d}{dt}\int_{I_j} u\,dx = (\widehat{u_x})\Big|_{\substack{x_{j+\frac{1}{2}}\\x_{j-\frac{1}{2}}}}^{x_{j+\frac{1}{2}}} \implies \frac{d}{dt}\overline{u} = \frac{1}{\Delta x}\left\{(\widehat{u_x})_{j+\frac{1}{2}} - (\widehat{u_x})_{j-\frac{1}{2}}\right\}$$

Euler forward in time evolution

$$\overline{u}_{j}^{n+1} = \overline{u}_{j}^{n} + \frac{\Delta t}{\Delta x} \left\{ (\widehat{u_{x}})_{j+\frac{1}{2}} - (\widehat{u_{x}})_{j-\frac{1}{2}} \right\} \xrightarrow{u_{j-\frac{1}{2}}} \underbrace{u_{j-\frac{1}{2}}}_{l_{j-1}} \underbrace{u_{j}}_{l_{j-\frac{1}{2}}} \underbrace{u_{j+\frac{1}{2}}}_{l_{j+1}} \underbrace{u_{j+\frac{1}{2}}}_{l_{j+1}} \underbrace{u_{j+\frac{1}{2}}}_{l_{j+\frac{1}{2}}} \underbrace{u_{j+\frac{1}{2}}}_{x_{j+\frac{1}{2}}} \underbrace{u_{j+\frac{1}{2}}} \underbrace{u_{j+\frac{1}{2}}} \underbrace{u_{j$$

Goal

$$m \le u_{j-1}^n(x), u_j^n(x), u_{j+1}^n(x) \le M \implies m \le \overline{u}_j^{n+1} \le M$$

Z.Chen (CAM, ORNL)

3-2-16 10 / 31

CAK RIDGE ELE DOG

 (\sim)

< □ > < □ >

Outline

- Discontinuous Galerkin methods
- General framework of M-P-S schemes
- Introduction to Direct DG method and its variations

M-P-S DDG schemes for triangular mesh

- Methods on rectangular mesh
- New ideas designed for unstructured mesh
- Extension to nonlinear diffusion equations
- Algorithm

Previous method to bound solution average

Previous idea

Pick $u_{j-\frac{1}{2}}^+, u_j, u_{j+\frac{1}{2}}^-$ as degrees of freedom and rewrite the quadratic polynomial $u_j^u(x)$ in the Lagrange format.

$$\overline{u}_{j}^{n+1} = H(u_{j-1}^{n}(x), u_{j}^{n}(x), u_{j}^{n+1}(x)))$$

$$= H(u_{j-\frac{3}{2}}^{+}, u_{j-1}, u_{j-\frac{1}{2}}^{-}, u_{j-\frac{1}{2}}^{+}, u_{j}, u_{j+\frac{1}{2}}^{-}, u_{j+\frac{1}{2}}^{+}, u_{j+1}, u_{j+\frac{3}{2}}^{-})$$

$$I_{j-1} \qquad I_{j} \qquad I_{j+1}$$

$$I_{j-\frac{1}{2}} \qquad I_{j+\frac{1}{2}} \qquad I_{j+\frac{1}{2}}$$

Z.Chen (CAM, ORNL)

3rd order MPS DDG for convection diffusion

3-2-16 11 / 31

M-P-S 3rd order DDG schemes

$$\overline{u}_{j}^{n+1} = H(u_{j-\frac{3}{2}}^{+}, u_{j-1}, u_{j-\frac{1}{2}}^{-}, u_{j-\frac{1}{2}}^{+}, u_{j}, u_{j+\frac{1}{2}}^{-}, u_{j+\frac{1}{2}}^{+}, u_{j+1}, u_{j+\frac{3}{2}}^{-})$$

= $H(\uparrow, \uparrow, \uparrow, \uparrow, \uparrow, \uparrow, \uparrow, \uparrow)$ convex combination

Given $m \leq u_j^n(x) \leq M$, we have

$$m = H(m, \cdots, m) \leq \overline{u}_j^{n+1} \leq H(M, \cdots, M) = M$$

Conditions needed:

$$\begin{array}{ll} \beta_0 \geq \frac{3}{2} & \frac{1}{8} \leq \beta_1 \leq \frac{1}{4} \\ \widehat{u_x} = \beta_0 \frac{[u]}{\Delta x} + \overline{u_x} + \beta_1 \Delta x [u_{xx}] \end{array} \qquad \begin{array}{ll} \text{Same results holds for SSP} \\ \text{Runge Kutta methods.} \\ \end{array}$$

Z.Chen (CAM, ORNL)

3-2-16 12 / 31

Difficulty for unstructured triangular mesh

For any shape triangle, it is very hard to identify the 6 degrees of freedom to rewrite the quadratic polynomial $u_K^n(x, y)$ to bound

$$m \leq \overline{u}_K^{n+1} \leq M$$

Z.Chen (CAM, ORNL)

3-2-16 13 / 31

Outline

- Discontinuous Galerkin methods
- General framework of M-P-S schemes
- Introduction to Direct DG method and its variations

M-P-S DDG schemes for triangular mesh

Methods on rectangular mesh

New ideas designed for unstructured mesh

- Extension to nonlinear diffusion equations
- Algorithm

New idea for triangular mesh

$$u_t - \Delta u = 0$$

DDG schemes:

$$\int_{\mathcal{K}} u_t v \, dx dy + \int_{\mathcal{K}} \nabla u \cdot \nabla v \, dx dy - \int_{\partial \mathcal{K}} \widehat{u_n} v \, ds = 0$$

Numerical flux:

$$\widehat{u_{\mathbf{n}}} = \beta_0 \frac{[u]}{h_K} + \overline{u_{\mathbf{n}}} + \beta_1 h_K [u_{\mathbf{nn}}]$$

Solution average evolution:

$$\overline{u}_{K}^{n+1} = \overline{u}_{K}^{n} + \frac{\Delta t}{\operatorname{area}(K)} \int_{\partial K} \widehat{u_{n}} \, ds$$

New idea: calculate $\int_{\partial K} \widehat{u_n} v \, ds$ directly!

3-2-16 14 / 31

New idea for triangular mesh

$$\overline{u}_{K}^{n+1} = \overline{u}_{K}^{n} + \frac{\Delta t}{\operatorname{area}(K)} \left\{ \int_{AB} \widehat{u_{\mathbf{n}}} \, ds + \int_{BC} \widehat{u_{\mathbf{n}}} \, ds + \int_{CA} \widehat{u_{\mathbf{n}}} \, ds \right\}$$

3-2-16 15 / 31

3rd order M-P-S DDG schemes

$$\overline{u}_{K}^{n+1} = H(u_{K}^{n}(x,y), u_{K_{1}}^{n}(x,y), u_{K_{2}}^{n}(x,y), u_{K_{3}}^{n}(x,y)) = H(\Uparrow, \Uparrow, \Uparrow, \Uparrow)$$

Theorem

Given $m \leq u_K^n(x, y) \leq M$ for all K, we have $m \leq \overline{u}_K^{n+1} \leq M$ provided,

$$eta_0 \geq rac{9}{4} - 6eta_1, \quad rac{1}{8} \leq eta_1 \leq rac{1}{4}, \quad \lambda = rac{\Delta t}{ extsf{area}(K)} \leq C(eta_0, eta_1, \mathcal{T}_h).$$

Z.Chen (CAM, ORNL)

3-2-16 16 / 31

ELE NOR

イロト イボト イヨト イヨト

Outline

- Discontinuous Galerkin methods
- General framework of M-P-S schemes
- Introduction to Direct DG method and its variations

M-P-S DDG schemes for triangular mesh

- Methods on rectangular mesh
- New ideas designed for unstructured mesh
- Extension to nonlinear diffusion equations
- Algorithm

Nonlinear diffusion on triangular mesh

$$u_t - \nabla \cdot (A(u)\nabla u) = 0$$

$$\overline{u}_K^{n+1} = \overline{u}_K^n + \frac{\Delta t}{\operatorname{area}(K)} \int_{\partial K} (A(\widehat{u})\nabla u \cdot \mathbf{n}) ds$$

$$\kappa$$

We have

 $A(u)\nabla u \cdot \mathbf{n} = \nabla u \cdot \gamma = ||\gamma||u_{\gamma} \quad \text{with} \quad \gamma = A^{T}(u)\mathbf{n}$ Diffusion matrix A(u) is positive definite $\Longrightarrow \gamma \cdot \mathbf{n} = \mathbf{n}^{T}A(u)\mathbf{n} > 0$

Numerical flux:

$$A(\widehat{u})\nabla\overline{u}\cdot\mathbf{n} = ||\gamma||\widehat{u_{\gamma}} = ||\gamma||\left\{\beta_{0}\frac{|u|}{h_{K}} + \overline{u_{\gamma}} + \beta_{1}h_{K}[u_{\gamma\gamma}]\right\}$$

Outline

- Discontinuous Galerkin methods
- General framework of M-P-S schemes
- Introduction to Direct DG method and its variations

M-P-S DDG schemes for triangular mesh

- Methods on rectangular mesh
- New ideas designed for unstructured mesh
- Extension to nonlinear diffusion equations
- Algorithm

2-D M-P-S limiter

$$\widetilde{u}_{K}^{n}(x,y) = \theta(u_{K}^{n}(x,y) - \overline{u}_{K}^{n}) + \overline{u}_{K}^{n}, \quad \theta = \min\left\{1, \left|\frac{M - \overline{u}_{K}^{n}}{M_{K} - \overline{u}_{K}^{n}}\right|, \left|\frac{m - \overline{u}_{K}^{n}}{m_{K} - \overline{u}_{K}^{n}}\right|\right\},$$

with

$$M_{\mathcal{K}} = \max_{(x,y)\in\mathcal{K}} u_{\mathcal{K}}^n(x,y), \quad m_{\mathcal{K}} = \min_{(x,y)\in\mathcal{K}} u_{\mathcal{K}}^n(x,y).$$

Algorithm

- 1. At time level t^n , apply M-P-S limiter to $u_K^n(x, y)$ and obtain $\widetilde{u}_K^n(x, y)$
- 2. Apply DDG scheme to $\tilde{u}_{K}^{n}(x, y)$ and evolve in time with SSP RK method and march forward the solution to the next time level $u_{K}^{n+1}(x, y)$

Mesh

(a) Triangular mesh

(b) Mesh with obtuse triangles

Z.Chen (CAM, ORNL)

3rd order MPS DDG for convection diffusion

3-2-16 19 / 31

Accuracy Tests

$u_t - \epsilon \Delta u = 0$ with $\epsilon = 1$

exact solution:	u(x, y, t) =	$e^{-8\pi^2\epsilon t}\sin$	$(2\pi(x+y))$
-----------------	--------------	-----------------------------	---------------

order		no M	M-P-S limiter			with	M-P-S limiter	
h	L ² error	L^{∞} error	$u_{\min} - ue_{\min}$	$u_{\max} - ue_{\max}$	L ² error	L^{∞} error	u _{min} – ue _{min}	$u_{\max} - ue_{\max}$
0.117			-3.91e-03	1.28e-03			0	0
0.0587	2.64	3.10	-2.40e-04	1.95e-04	2.71	3.10	0	0
0.0293	2.90	3.01	-1.49e-05	2.60e-05	2.91	3.01	0	0
0.0147	2.99	2.98	-9.61e-07	3.27e-06	2.99	2.98	0	0
0.00733	2.99	2.99	-5.82e-08	4.11e-07	2.99	2.99	0	0

Table: Accuracy table on triangular mesh 1(a) at t = 0.0001.

order		no M	∕I-P-S limiter		with M-P-S limiter			
h	L ² error	L^{∞} error	$u_{\min} - ue_{\min}$	$u_{\max} - ue_{\max}$	L ² error	L^{∞} error	u _{min} – ue _{min}	$u_{\max} - ue_{\max}$
0.148			-1.17e-02	9.70e-03			0	0
0.0741	2.74	3.00	-7.86e-04	5.49e-05	3.11	2.85	0	0
0.0371	2.87	3.06	-2.66e-05	4.24e-05	2.90	3.22	0	0
0.0185	2.97	3.02	-1.12e-06	9.22e-07	2.97	3.02	0	0
0.00927	2.99	3.01	-7.17e-08	1.33e-08	2.99	3.01	0	0

Table: Accuracy table on unstructured mesh 1(b) with obtuse triangles at 0.0001.

Z.Chen (CAM, ORNL)

ELE DOG

$$u_t - \Delta(u^2) = 0$$

Positivity-preserving m = 0

= 990

Z.Chen (CAM, ORNL)

3rd order MPS DDG for convection diffusion

3-2-16 21 / 31

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Figure: The cut of the DDG interface correction solution along line x + y = 0 at t = 0.005. Red circle symbol: no M-P-S limiter. Blue diamond symbol: M-P-S limiter applied.

Z.Chen (CAM, ORNL)

3-2-16 22 / 31

Incompressible Navier-Stokes equations

vorticity stream-function formulation

$$w_t + (uw)_x + (vw)_y = \frac{1}{Re} \nabla w \tag{1}$$

$$\Delta \phi = w \tag{2}$$

$$\langle u, v \rangle = \langle -\phi_y, \phi_x \rangle$$
 (3)

We adopt Liu and Shu's method[†] that couple stream function ϕ with P^2 continuous finite element and DG for vorticity w.

$$\underbrace{w^{n}}_{(2)} \xrightarrow{\mathsf{CFE}} \phi^{n+1} \xrightarrow{(3)} u^{n+1}, v^{n+1} \xrightarrow{\mathsf{DDG-IC}} w^{n+1} \xrightarrow{\mathsf{W}^{n+1}}$$

We carry out two tests: accuracy check and vortex patch problem.

Accuracy check

$$w(x, y, t) = -2\sin(x)\sin(y)e^{-\frac{2t}{Re}}$$

order	no M-P-S limiter				with M-P-S limiter			
h/2π	L ² error	L^{∞} error	$u_{\min} - ue_{\min}$	$u_{\max} - ue_{\max}$	L ² error	L^{∞} error	$u_{\min} - ue_{\min}$	$u_{\max} - ue_{\max}$
0.117			-8.17e-03	7.72e-03			0	0
0.0587	2.82	3.16	-3.64e-04	6.41e-04	2.88	3.18	0	0
0.0293	2.89	2.82	-6.40e-05	-4.50e-06	2.89	2.82	0	-4.52e-06
0.0147	3.00	3.51	-1.29e-06	3.62e-06	3.00	3.51	0	0
0.00733	2.96	2.66	-1.53e-07	1.95e-07	2.96	2.66	0	0

Table: Mesh 1(a), final time T = 0.1

order		no l	M-P-S limiter		with M-P-S limiter			
$h/2\pi$	L ² error	L^{∞} error	u _{min} – ue _{min}	$u_{\max} - ue_{\max}$	L ² error	L^{∞} error	u _{min} – ue _{min}	$u_{\max} - ue_{\max}$
0.148			-8.40e-04	-7.18e-05			0	-7.18e-05
0.0741	2.93	3.03	3.56e-05	-6.40e-05	2.93	3.03	4.15e-05	-6.40e-05
0.0371	2.86	2.90	3.36e-06	1.71e-06	2.86	2.90	3.36e-06	0
0.0185	2.99	3.07	1.79e-07	1.43e-07	2.99	3.07	1.79e-07	0

Table: Mesh 1(b) with obtuse triangles, final time T = 0.1

CAK RIDGE

Z.Chen (CAM, ORNL)

3-2-16 24 / 31

Image: A math a math

Vortex patch problem

$$\begin{cases} w_t + (uw)_x + (vw)_y = \frac{1}{Re} \nabla w \\ \Delta \phi = w, \quad \langle u, v \rangle = \langle -\phi_y, \phi_x \rangle \end{cases}$$

$$w_0(x,y) = \begin{cases} -1, & (x,y) \in [\frac{\pi}{2}, \frac{3\pi}{2}] \times [\frac{\pi}{4}, \frac{3\pi}{4}], \\ 1, & (x,y) \in [\frac{\pi}{2}, \frac{3\pi}{2}] \times [\frac{5\pi}{4}, \frac{7\pi}{4}], \\ 0, & otherwise. \end{cases}$$

Z.Chen (CAM, ORNL)

3rd order MPS DDG for convection diffusion

3-2-16 25 / 31

-

・ロト ・日 ・ ・ ヨ ・ ・

Vortex patch Re = 100

Figure: Contours of the solutions, Re = 100, at t = 1. Top: no M-P-S limiter ($w_{min} = -1.0011$, $w_{max} = 1.0008$); Bottom: add M-P-S limiter ($w_{min} = -1$, $w_{max} = 1$). 30 equally spaced contour lines are plotted.

Vortex patch Re = 10000

Figure: Contours of the solutions, Re = 10000 at t = 5. Top: no M-P-S limiter ($w_{min} = -1.1211$, $w_{max} = 1.1508$); Bottom: add M-P-S limiter ($w_{min} = -1$, $w_{max} = 1$). 30 equally spaced contour lines are plotted.

Time evolutions of numerical vorticity w from DDG-IC schemes with M-P-S limiter, up to t = 5.

Z.Chen (CAM, ORNL)

3rd order MPS DDG for convection diffusion

3-2-16 27 / 31

EL NOR

		Re =	= 100		Re = 10000				
$h/2\pi$	no limiter		with limiter		no limiter		with limiter		
	w _{min} – we _{min}	$w_{\rm max} - w e_{\rm max}$	w _{min} – we _{min}	$w_{\rm max} - w e_{\rm max}$	w _{min} – we _{min}	$w_{\rm max} - w e_{\rm max}$	$w_{\min} - we_{\min}$	$w_{\rm max} - w e_{\rm max}$	
0.117	-6.96e-01	6.87e-01	0	0	-8.62e-01	8.62e-01	0	0	
0.0587	-2.72e-01	2.66e-01	0	0	-6.14e-01	7.82e-01	0	0	
0.0293	-8.02e-02	4.22e-02	0	0	-5.14e-01	5.77e-01	0	0	
0.0147	-3.17e-03	3.00e-03	0	0	-4.35e-01	4.79e-01	0	0	
0.00733	-6.41e-04	7.41e-04	0	0	-3.52e-01	2.81e-01	0	0	

Table: Maximum and minimum of the solutions, Re = 100 and Re = 10000 at t = 0.1.

三日 のへの

Image: A match a ma

$$u_t - u_{xx} = 0$$

$$\int_{I_j} u_t v \, dx + \int_{I_j} u_x v_x \, dx - (\widehat{u_x} v) \Big|_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} + [u](\widetilde{v_x})_{j+\frac{1}{2}} + [u](\widetilde{v_x})_{j-\frac{1}{2}} = 0$$

Euler forward in time evolution (v = 1)

$$\overline{u}_{j}^{n+1} = \overline{u}_{j}^{n} + \frac{\Delta t}{\Delta x} \left\{ (\widehat{u_{x}})_{j+\frac{1}{2}} - (\widehat{u_{x}})_{j-\frac{1}{2}} \right\} \xrightarrow{(\widehat{u_{x}})_{j-\frac{1}{2}}} = H(u_{j-1}^{n}(x), u_{j}^{n}(x), u_{j}^{n+1}(x))$$
with $\widehat{u_{x}} = \beta_{0} \frac{[u]}{\Delta x} + \overline{u_{x}} + \beta_{1} \Delta x [u_{xx}]$

Degenerates to IPDG without second derivatives jump term.

Z.Chen (CAM, ORNL)

3rd order MPS DDG for convection diffusion

3-2-16 29 / 31

Conclusions

- Sufficient conditions are given to obtain 3rd order M-P-S DDG methods for convection diffusion problems on triangular mesh
- ► Second derivative jump term [*u*_{nn}] is crucial.

Future work

- Positivity-preserving for the heights of shallow water equations
- Positivity-preserving for density and pressure profiles of compressible Navier-Stokes Equations

Z.Chen (CAM, ORNL)

3-2-16 30 / 31

Thank you for your attention! Any questions?

Z.Chen (CAM, ORNL)

3rd order MPS DDG for convection diffusion

Motivations

- Strong stability result in the L^{∞} sense
- Consistency to physical meanings (e.g. preserve positivity of density profile)

Numerical challenges

- Finite difference methods: no better than 2nd order accuracy
- Classical finite element methods (2D):
 - Linear FE: mesh without obtuse elements
 - Quadratic FE: extremely restrictive assumptions on the mesh
- Little is known about high order finite volume or spectral methods, etc.

DDG method and its variations

$$\int_{I_j} u_t v \, dx + \int_{I_j} u_x v_x \, dx - (\widehat{u_x} v) \Big|_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} + \boxed{\sigma\left([u](\widetilde{v_x})_{j+\frac{1}{2}} + [u](\widetilde{v_x})_{j-\frac{1}{2}}\right)} = 0$$

• DDG:
$$\sigma = 0$$
, $\widehat{u_x}\Big|_{x_{j\pm \frac{1}{2}}} = \beta_0 \frac{[u]}{\Delta x} + \overline{u_x} + \beta_1 \Delta x [u_{xx}] + \beta_3 \Delta x^3 [u_{xxxx}] + \cdots$

• DDG with interface correction: $\sigma = 1$,

$$\begin{cases} \widehat{u_x} = \beta_0 \frac{[u]}{\Delta x} + \overline{u_x} + \beta_1 \Delta x [u_{xx}] \\ \widetilde{v_x} = \overline{v_x} \end{cases}$$

• DDG with symmetric structure: $\sigma = 1$, ($\beta_1 = 0 \rightarrow \mathsf{IPDG}$)

$$\begin{cases} \widehat{u_x} = \beta_{u,0} \frac{[u]}{\Delta x} + \overline{u_x} + \beta_1 \Delta x [u_{xx}] \\ \widetilde{v_x} = \beta_{v,0} \frac{U}{\Delta x} + \overline{v_x} + \beta_1 \Delta x [v_{xx}] \end{cases}$$

▶ non-symmetric DDG method: $\sigma = -1$, $(\beta_{u,0} > \beta_{v,0} \rightarrow NIPG)$

$$\begin{cases} \widehat{u_x} = \beta_{u,0} \frac{[u]}{\Delta x} + \overline{u_x} + \beta_1 \Delta x [u_{xx}] \\ \widetilde{v_x} = \beta_{v,0} \frac{[v]}{\Delta x} + \overline{v_x} + \beta_1 \Delta x [v_{xx}] \end{cases}$$

Z.Chen (CAM, ORNL)

I= nac

DDG method and its variations

$$\int_{I_j} u_t v \, dx + \int_{I_j} u_x v_x \, dx - (\widehat{u_x} v) \Big|_{x_{j-\frac{1}{2}}}^{x_{j+\frac{1}{2}}} + \boxed{\sigma\left([u](\widetilde{v_x})_{j+\frac{1}{2}} + [u](\widetilde{v_x})_{j-\frac{1}{2}}\right)} = 0$$

- DDG: $\sigma = 0$, $\widehat{u_x}\Big|_{x_{j\pm \frac{1}{2}}} = \beta_0 \frac{[u]}{\Delta x} + \overline{u_x} + \beta_1 \Delta x [u_{xx}] + \beta_3 \Delta x^3 [u_{xxxx}] + \cdots$
- DDG with interface correction: $\sigma = 1$,

$$\begin{cases} \widehat{u_x} = \beta_0 \frac{[u]}{\Delta x} + \overline{u_x} + \beta_1 \Delta x [u_{xx}] \\ \widetilde{v_x} = \overline{v_x} \end{cases}$$

• DDG with symmetric structure: $\sigma = 1$, ($\beta_1 = 0 \rightarrow \mathsf{IPDG}$)

$$\begin{cases} \widehat{u_x} = \beta_{u,0} \frac{[u]}{\Delta x} + \overline{u_x} + \beta_1 \Delta x [u_{xx}] \\ \widetilde{v_x} = \beta_{v,0} \frac{[v]}{\Delta x} + \overline{v_x} + \beta_1 \Delta x [v_{xx}] \end{cases}$$

• non-symmetric DDG method: $\sigma = -1$, $(\beta_{u,0} > \beta_{v,0} \rightarrow NIPG)$

$$\begin{cases} \widehat{u_x} = \beta_{u,0} \frac{[u]}{\Delta x} + \overline{u_x} + \beta_1 \Delta x [u_{xx}] \\ \widetilde{v_x} = \beta_{v,0} \frac{[v]}{\Delta x} + \overline{v_x} + \beta_1 \Delta x [v_{xx}] \end{cases}$$

Z.Chen (CAM, ORNL)

$$u_t - \Delta(u^2) = 0$$

Positivity-preserving m = 0

Z.Chen (CAM, ORNL)

3rd order MPS DDG for convection diffusion

3-2-16 34 / 31

= nar

$$u_t - \Delta(u^2) = 0$$

Z.Chen (CAM, ORNL)

3rd order MPS DDG for convection diffusion

3-2-16 34 / 31

三日 のへの

Figure: The cut of the DDG interface correction solution along line x + y = 0 at t = 0.005. Red circle symbol: no M-P-S limiter. Blue diamond symbol: M-P-S limiter applied.

2-D strongly degenerate nonlinear convection diffusion equations

$$egin{aligned} u_t +
abla \cdot \langle u^2, u^2
angle &= \epsilon
abla \cdot (
u(u)
abla u), &
u(u) &= \left\{ egin{aligned} 0, & |u| \leq 0.25, \ 1, & |u| > 0.25. \end{aligned}
ight. \end{aligned}$$

3-2-16 36 / 31

Z.Chen (CAM, ORNL)