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Abstract

In this paper, we develop a new WENO weak Galerkin finite element scheme for solving the
time dependent hyperbolic equations. The upwind-type stabilizer is imposed to enforce the flux
direction in the scheme. For the linear convection equations, we analyze the L2-stability and error
estimate for L2-norm. We also investigate a simple limiter using weighted essentially non-oscillatory
(WENO) methodology for obtaining a robust procedure to achieve high order accuracy and capture
the sharp, non-oscillatory shock transitions. The approach applies for linear convection equations
and Burgers equations. Finally, numerical examples are presented for validating the theoretical
conclusions.

Keywords: Hyperbolic equations; weak Galerkin; finite element methods; upwind scheme;
WENO limiter; Burgers equations.

1. Introduction

In this paper, we consider the following one-dimensional hyperbolic equations:

∂u

∂t
+ β

∂u

∂x
= 0, (x, t) ∈ I × J (1)

u = 0, x ∈ Γ−, (2)

with initial condition u(x, 0) = g(x). β is assumed to be a nonzero constant. Here J = (0, T ],
T ≤ ∞, and the homogeneous inflow boundary Γ− condition is assumed for simplicity. We also
denote the other boundary Γ+ := ∂I\Γ−. In this paper, we assume I is a one dimensional domain.

The hyperbolic equations have broad applications in science and engineering, including fluid
mechanics, aerodynamics, and many other areas. In many cases, the hyperbolic equations may have
discontinuous solutions when the boundary or initial data is discontinuous. It is still a challenge to
develop numerical methods for resolving discontinuities without significant spurious oscillations.
The classical Burgers equation, which is in the class of nonlinear hyperbolic equations, has been
a center of interest for researchers studying various physical phenomena such as theory of shock
waves, fluid dynamics, turbulent flow and gas dynamics. Numerical solution of Burgers’ equation
is a natural and the first step towards developing methods for the computation of complex flows.
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Various numerical methods have been proposed in the past for hyperbolic equations, including
finite difference, finite volume, finite element, boundary element and spectral methods. The first
discontinuous Galerkin (DG) method was introduced in 1973 by Reed and Hill [22], in the frame-
work of neutron transport, i.e. a time independent linear hyperbolic equation. Then the complete
discontinuous finite element basis have been analyzed in [15, 16] and used in the Runge-Kutta
time stepping schemes [11]. These numerical schemes employ the piecewise discontinuous poly-
nomials and also impose continuity weakly by penalizing the jump of solution across the element
boundaries. Upwind schemes, first proposed as finite difference methods, were later extended to
finite element methods to enforce the flux directions in [1, 3]. However, for problems with strong
discontinuities, the DG scheme will involve significant oscillations near discontinuities. In such
situation, the nonlinear limiters are needed to control these oscillations. In the previous work,
minmod-based limiter [6, 7, 8, 9, 10], moment-based limiter [2, 4] have been developed. In [32], the
simpler and compact higher order preserving limiter has been proposed for RKDG methods. In
the target cell, the approximated polynomial is reconstructed depending on the information from
the localized cell and the associated directly adjacent cells. The limiter reduces or even removes
the spurious oscillations near discontinuities, and maintains the original high-order accuracy in
smooth region. This limiter is later modified as a simple and compact Hermite WENO limiter [30]
in order to improve the robustness in the computation of problems with strong shocks or contact
discontinuities. Thanks to the compactness of the reconstruction stencil, such limiter is applied
onto unstructured meshes [29, 31] and cubed sphere [14].

Weak Galerkin (WG) finite element method was first proposed by Wang and Ye in [25]. By
using the discontinuous functions, WG schemes have the flexibilities in adopting general polytopal
meshes and employing high order polynomials. This simple and parameter free formulation has
been used to solve various partial differential equations, including convection-diffusion equations
[17, 13], biharmonic problems [18], and Stokes flow [26, 27, 28], Burgers equations [5] etc. The
upwind featured stabilizer methods are employed in [23] for steady hyperbolic equations.

In this work, we consider the time dependent hyperbolic equations. Our main purpose is
to analyze the upwind weak Galerkin methods for time dependent hyperbolic equations both
theoretically and numerically through this study. Then, this equation subject to discontinuous
initial conditions may contain discontinuities for later solutions. Based on the proposed numerical
schemes, we shall investigate the explicit time stepping method and the effective WENO limiter
approach for generating the discontinuous capture feature capturing schemes. Because of the
transient shock capturing feature, we extend the approach to investigate the inviscid Burgers
equations. The rest of the paper is organized as follows: we introduce briefly the notations and
finite element space in Section 2. In Section 3, the semi-discrete WG finite element method is
proposed and analyzed. Section 4 is contributed to designing the explicit time stepping method
and providing the details in WENO limiters. Then we discuss the applications of our scheme
for solving Burgers equations. Numerical examples are presented in Section 5 for validating our
theoretical conclusion and numerical performance. Lastly, the paper ends with conclusion and
future research plans in Section 6.

2



2. Notations

In this section we shall introduce the notations, definitions necessary for proposing the weak
Galerkin method.

Let Ih := ∪Nj=1[xj−1, xj] be a partition of domain I, and Ij = [xj−1, xj] be the partition element.
Denote the mesh size by hj = xj−xj−1 and h = maxj hj. For any given integer k ≥ 0, the discrete
weak function space associated with partition Ij is defined as following:

VIj = {v = {v0, v
j−1
b , vjb} : v0 ∈ Pk(Ij)},

where Pk(Ij) denotes the polynomial with degree ≤ k on the interior of partition element Ij. Here
vj−1
b := vb|xj−1

and vjb := vb|xj
denote the endpoint values on the partition element Ij = [xj−1, xj].

For simplification of notations, we shall omit the superscript but denote vb when there is no
confusion. It is noted that the interior value v0 may be independent of the endpoint values vj−1

b

and vjb . The weak Galerkin finite element space Vh is defined by

Vh = {v = {v0, vb} : v ∈ ∪Nj=1VIj , [[vb]]xj
= 0,∀j = 1, 2, . . . , N − 1}. (3)

Here the notation [[v]]|xj
= v

Ij
b |xj
− vIj−1

b |xj
. So in the finite element space vb takes the single value

on the grid point xj (j = 0, 1, . . . , N), and v0 is a piecewise polynomial with degree up to k. The

subspaces with homogeneous boundary condition is denoted as V 0,Γ+

h := {v ∈ Vh, vb|Γ+ = 0} and

V 0,Γ−

h := {v ∈ Vh, vb|Γ− = 0}.

Definition 1. For any v = {v0, vb} ∈ Vh, on each element Ij = [xj−1, xj] ∈ Ih, the weak gradient
is defined as dwv ∈ Pk(Ij) (integer k ≥ 0) on Ij satisfying∫

Ij

dwv qdx = −
∫
Ij

v0
dq

dx
dx+ vbq|xj

xj−1
, ∀q ∈ Pk(Ij). (4)

Throughout this paper we use standard notions for Sobolev spaces and their norms. Let T be
a measurable set, then denote the inner product by (·, ·)T . The norm and semi-norm in the space
Wm,2(T ) are denoted by ‖ · ‖m,T and | · |m,T . Denote ‖ · ‖T := ‖ · ‖0,T . Besides, if T = I, we shall
withdraw the subscript T . For simplicity, we adopt the following notations,

(v, w) =
∑
Ij∈Ih

(v, w)Ij =
∑
Ij∈Ih

∫
Ij

vwdx,

〈v, w〉 =
∑
Ij∈Ih

〈v, w〉∂Ij =
∑
Ij∈Ih

(
vw|xj−1

+ vw|xj

)
.

The blinear form is introduced for v, w ∈ Vh, as following:

a(v, w) =
1

2
(βdwv, w0)− 1

2
(βv0, dww) + S(v, w), (5)

where

S(v, w) =
1

2
〈|β|(v0 − vb), w0 − wb〉. (6)

In the following of this paper, we use C for generic constants independent of mesh size, and
the solution to equations (1)-(2), which may not necessarily be the same at each occurrence.
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3. Semi-discrete WG finite element method

The goal of this section is to develop semi-discrete WG finite element method for problem
(1)-(2) and derive error estimate in the discrete L2-norm.

3.1. Semi-discrete WG finite element scheme

Based on the variational formulation, we propose the semi-discrete WG finite element method
as following.

Algorithm 1. A weak Galerkin approximation for equation (1)-(2) is to seek uh(t) = {u0(t), ub(t)} ∈
V 0,Γ−

h satisfying the following:

(
∂u0

∂t
, v0) + a(uh, v) = 0, ∀v = {v0, vb} ∈ V 0,Γ+

h , t ∈ J. (7)

uh(x, 0) = gh(x), x ∈ I. (8)

Here gh(x) is the projection for the initial condition g(x) to the finite element space Vh.

Lemma 1. There exists a unique numerical solution for the WG scheme (7)-(8).

Proof. By the definition of bilinear form a(·, ·), for ∀v ∈ V 0,Γ+

h

a(v, v) =
1

2
(βdwv, v0)− 1

2
(βdwv, v0) + S(v, v)

= S(v, v).

Assume there exit two numerical solutions u1
h and u2

h for the above equation (7)-(8). By taking
εh = u1

h − u2
h and v = εh, we get

0 =
1

2

d

dt
‖ε0‖2 + S(εh, εh)

=
1

2

d

dt
‖ε0‖2 +

1

2

∑
Ij∈Ih

([
|β|(ε0 − εb)2

]
|xj−1

+
[
|β|(ε0 − εb)2

]
|xj

)
. (9)

Since

(ε0 − εb) |2xj
≥ 0, j = 0, 1, . . . , N,

we have

d

dt
‖ε0‖2 ≤ 0.

Thanks to the fact ‖ε0‖2 = 0 at time t = 0, we conclude that ‖ε0‖2 ≡ 0, which implies uniqueness
of the numerical solution to the scheme. Since the scheme (7)-(8) is posed in a finite dimensional

space V 0,Γ−

h , the uniqueness yields the existence of the solution. �
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Besides, taking v = uh and following the same arguments, we obtain the L2 stability as blow.

Lemma 2. The solution uh = {u0, ub} to the semi-discrete WG scheme (7)-(8) satisfies the fol-
lowing L2 stability.

d

dt
‖u0‖2 ≤ 0.

Lemma 3. The numerical solution of scheme (7)-(8) conserves mass.

Proof. For simplicity, we assume β > 0 and thus the inflow boundary condition is given at grid
point x0, i.e, ub|x0 = 0 and vb|xN

= 0. Taking v0 = 1 and vb|xj
= 1, j = 0, . . . , N − 1, vb|xN

= 0 in
the equation (7), one gets

1

2

d

dt

∑
Ij∈Ih

∫
Ij

u0dx

+ T1 − T2 + T3 = 0. (10)

Here, the definition of weak gradient dw and the boundary condition ub|x0 = 0 imply

T1 :=
1

2
(βdwuh, v0) =

1

2

∑
Ij∈Ih

∫
Ij

βdwuhv0dx =
1

2

∑
Ij∈Ih

(
βubv0|xj

xj−1
−
∫
Ij

βu0
∂

∂x
1dx

)

=
1

2

∑
Ij∈Ih

(βub)|xj

xj−1
= −β

2
ub|x=x0 +

β

2
ub|x=xN

=
β

2
ub|x=xN

.

and by v0 = 1, vb|xj
= 1, j = 0, 1 . . . , N − 1, vb|xN

= 0 , and integration by parts, one obtains,

T2 :=
1

2
(βu0, dwv) =

1

2

∑
Ij∈Ih

∫
Ij

βu0dwvdx =
1

2

∑
Ij∈Ih

(
βu0vb|xj

xj−1
−
∫
Ij

βv0
∂u0

∂x
dx

)

=
1

2

∑
Ij∈Ih

(
βu0vb|xj

xj−1
− βu0|xj

xj−1

)
= −β

2
u0|xN

.

Furthermore,

T3 := S(uh, v) =
1

2

∑
Ij∈Ih

〈|β|(u0 − ub), v0 − vb〉∂Ij =
1

2
β(u0 − ub)|xN

.

Thus replacing the above estimates to (10), the following obtained

1

2

d

dt

∑
Ij∈Ih

∫
Ij

u0dx

 = 0,

which by taking integration completes the proof. �

Remark 4. The theoretical conclusions for homogeneous inflow boundary conditions also hold
for periodic boundary conditions. The proof can be established in the same fashion.
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3.2. Error Analysis

Let Qh : u ∈ H1(I) → Qhu ∈ Vh such that Qhu|Ij = {Q0u,Qbu}, j = 1, 2, . . . , N . Here Q0 is
the L2-projection on the element Ij and Qb denotes the interpolation of function u on the grids
points xj. It follows Bramble-Hilbert Lemma for projection operator that if u ∈ Hk+1(I)

‖Q0u− u‖Ij + hj
k−1|Q0u− u|1,Ij ≤ Chj

k‖u‖k+1,Ij . (11)

Lemma 5. Let u ∈ H1(I) and then for q ∈ Pk(Ij), ∀Ij ∈ Ih

(ux, q)Ij = (dwQhu, q)Ij . (12)

Proof. By the definition of projection operator Qh and the weak derivative dw, one has∫
Ij

dwQhuqdx = −
∫
Ij

Q0u
∂q

∂x
dx+ [Qbuq]

xj+1

xj
= −

∫
Ij

u
∂q

∂x
dx+ [uq]xj+1

xj

=

∫
Ij

∂u

∂x
qdx

and hence proves the lemma. �

Lemma 6. Let u(t) ∈ H1(0, T ;H2(I)) be the solution of problem (1)-(2). Then we have

(
∂Q0u

∂t
, v0) + a(Qhu, v) = `h(u, v) + S(Qhu, v),∀v ∈ V 0

h , t ∈ J, (13)

where `h(u, v) =
1

2

∑
Ij∈Ih β(Q0u−Qbu)(v0 − vb)|xj

xj−1
.

Proof. Multiplying the equation (1) by v0 and taking integration, we obtain

(
∂u

∂t
, v0) + (βux, v0) = 0. (14)

It follows integration by parts and definitions of Q0 and Qb that

(βux, v0)Ij = −
∫
Ij

βu
∂v0

∂x
dx+ βuv0|xj

xj−1
= −

∫
Ij

βQ0u
∂v0

∂x
dx+ βQbuv0|xj

xj−1

=

∫
Ij

β
∂Q0u

∂x
v0dx− βQ0uv0|xj

xj−1
+ βQbuv0|xj

xj−1

=

∫
Ij

β
∂Q0u

∂x
v0dx− βQ0uvb|xj

xj−1
+ βQ0u(vb − v0)|xj

xj−1
+ βQbuv0|xj

xj−1

= −(βQ0u, dwv)Ij + βQ0u(vb − v0)|xj

xj−1
+ βQbuv0|xj

xj−1
.

Adding the above equation over j, together withQbu|x0 = 0, vb|xN
= 0, and the fact

∑
Ij
βQbuvb|xj

xj−1

= 0, we get

(βux, v0) = −(βQ0u, dwv) +
∑
Ij∈Ih

β(Q0u−Qbu)(vb − v0)|xj

xj−1
. (15)
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Then Lemma 5 and (15) imply

(βux, v0) =
1

2
(βdwQhu, v0) +

1

2
(βux, v0)

=
1

2
(βdwQhu, v0)− 1

2
(βQ0u, dwv) +

1

2

∑
Ij∈Ih

β(Q0u−Qbu)(vb − v0)|xj

xj−1

and by substituting to equation (14) it follows,

(
∂u

∂t
, v0) +

1

2
(βdwQhu, v0)− 1

2
(βQ0u, dwv) +

1

2

∑
Ij∈Ih

β(Q0u−Qbu)(vb − v0)|xj

xj−1
= 0.

Adding S(Qhu, v) to both sides gives the conclusion. �

Thus, subtracting (7) from (13), and denote eh = Qhu − uh, we have the following error
equation:

(
∂e0

∂t
, v0) + a(eh, v) = `h(u, v) + S(Qhu, v),∀v ∈ V Γ+,0

h . (16)

Theorem 7. Let u(x, t) and uh(x, t) = {u0(x, t), ub(x, t)} be the solutions of problem (1)-(2) and
(7)-(8), respectively, with u ∈ H1(0, T ;H1+k(I)) and gh = Qhg. Then, there exists a constant C
such that

‖Q0u− u0‖2 ≤ Ch2k+1

∫ t

0

‖u‖2
k+1ds. (17)

Proof. By triangle inequality, one obtains,

‖Q0u−Qbu‖∂Ij ≤ ‖Q0u− u‖∂Ij + ‖u−Qbu‖∂Ij .

The fact that Qbu denotes the interpolation of function u on the grid points gives

‖Q0u−Qbu‖∂Ij ≤ ‖Q0u− u‖∂Ij .

Such bound, together with Cauchy-Schwartz inequality, trace inequality, and Young’s inequal-
ity, one has

`h(u, eh) =
1

2

∑
Ij∈Ih

(β(Q0u−Qbu), e0 − eb)|xj

xj−1

≤
∑
Ij∈Ih

‖Q0u−Qbu‖∂Ij‖|β|(e0 − eb)‖∂Ij

≤
∑
Ij∈Ih

‖Q0u− u‖∂Ij‖|β|(e0 − eb)‖∂Ij

≤ Chk+1/2
∑
Ij∈Ih

‖u‖k+1,Ij‖|β|(e0 − eb)‖∂Ij

≤ Ch2k+1‖u‖2
k+1 +

1

4

∑
Ij∈Ih

‖|β|(e0 − eb)‖2
∂Ij
.
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Cauchy-Schwartz inequality and Young’s inequality imply

S(Qhu, eh) ≤ C
∑
Ij∈Ih

‖Q0u−Qbu‖∂Ij‖|β|(e0 − eb)‖∂Ij

≤ Ch2k+1‖u‖2
k+1 +

1

4

∑
Ij∈Ih

‖|β|(e0 − eb)‖2
∂Ij
.

By the formulation of bilinear form a(·, ·), a(eh, eh) = S(eh, eh), and thus (16) can be re-written
as

∂

∂t
‖e0‖2 + S(eh, eh) =

∂

∂t
‖e0‖2 +

1

2

∑
Ij∈Ih

‖|β|(e0 − eb)‖2
∂Ij

= `h(u, eh) + S(Qhu, eh)

≤ Ch2k+1‖u‖2
k+1 +

1

2

∑
Ij∈Ih

‖|β|(e0 − eb)‖2
∂Ij
.

One obtains

∂

∂t
‖e0‖2 ≤ Ch2k+1‖u‖2

k+1.

Integrating the above estimate with respect to t and together with Gronwall lemma, we can get
the following estimate

‖e0‖2 ≤ Ch2k+1

∫ t

0

‖u‖2
k+1ds.

4. Implementation Details

In this section, we shall discuss the implementation details for fully-discrete WG finite element
method for problem (1)-(2). Denote the basis functions corresponding to v0 as Φj and vb as Ψj;
the coefficient vectors corresponding to u0 and ub are denoted as U0 and Ub The algorithm can
be reformed as following matrix form:(

M
∂

∂t
U0

0

)
+

[
A00 A0b

Ab0 Abb

](
U0

Ub

)
= 0, (18)

where the matrix M =
∑

Ij
(Φm,Φn)Ij denote the mass matrix and the matrices A00 = a(Φm,Φn),

A0b = a(Φm,Ψn), Ab0 = a(Ψm,Φn) and Abb = a(Ψm,Ψn) (m = 1, . . . ,#DoFu0 and n = 1, . . . ,#DoFub
).

In this paper, we shall consider implicitbackward Euler’s method, explicit forward Euler’s method,
and third order TVD Runge-Kutta’s method.
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4.1. Implicit Time Stepping Method

The implicit time stepping method has to take an inversion of a big matrix at each time step.
For example, let assume the backward Euler’s method. Denote the time step as τ and denote

Un+1 = [Un+1
0 ,Un+1

b ]>. The time derivative is replaced by
∂

∂t
U =

Un+1 −Un

τ
and we are solving

the following system: MUn+1
0 − MUn

0

τ
0

+

[
A00 A0b

Ab0 Abb

](
Un+1

0

Un+1
b

)
= 0.

4.2. Explicit Time Stepping Method

The explicit time stepping method is first to solve ub from u0 from all the test functions vb as
follows,

Ub = −A−1
bb Ab0U0. (19)

Substituting the above equation (19) to (18), and the equations can be rewritten as:

M
∂

∂t
U0 + A00U0 + A0b

(
− A−1

bb Ab0U0

)
= 0.

Rearranging the above equation, one has

M
∂

∂t
U0 + (A00 − A0bA

−1
bb Ab0)U0 = 0. (20)

For simplicity, denote K = −(A00 − A0bA
−1
bb Ab0), then we can rewritten the equation (20) to

M
∂

∂t
U0 − KU0 = 0. (21)

The above ODE system
∂

∂t
U0 = M−1KU0 := L(U0) can be solved by explicit forward Euler’s

method or the following third order TVD Runge-Kutta (RK3) method given by

U
(1)
0 = Un

0 + ∆tL(Un
0 ),

U
(2)
0 =

3

4
Un

0 +
1

4
U

(1)
0 +

1

4
∆tL(U

(1)
0 ),

Un+1
0 =

1

3
Un

0 +
2

3
U

(2)
0 +

2

3
∆tL(U

(2)
0 ).

4.3. WENO limiter

In this subsection, we cite the details of the WENO limiting procedure in [32] and modify it
for our method.

The schemes to solve hyperbolic equations with possibly discontinuous solutions suffer os-
cillatory numerical results near the discontinuities, which may lead to instability and cause the
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simulation to blow up. The goal for applying WENO limiter is to reduce the spurious oscillations
of numerical solutions near discontinuities and maintain the original high order accuracy of the
scheme in smooth region. It is achieved by detecting the troubled cells, and then reconstructing
the approximation on interior of the troubled cell from a local stencil (including the cell and its
immediate neighboring cells). The reconstruction is a convex combination of three candidates, in-
cluding the original solution and the two modified extrapolations from neighbor cells. The weights
in this reconstruction are determined by smoothness of the candidates. Such reconstructions are
only applied onto the troubled cells to save computational cost and also protect the accuracy in
the smooth region. We adopt the following framework:

Algorithm 2. The WENO limiting procedure is described as follows. Assuming that WG solution
at time step n is unh, for cells Ij, j = 1, . . . , N ,

1. Use the minmod limiter described in (22) and (25) to detect whether Ij is a troubled cell or
not.

2. If Ij is not a troubled cell, then un,new
0 |Ij = un|Ij .

3. If Ij is a troubled cell, then

(a) Denote un0 on the cells Ij−1, Ij, Ij+1 as p0(x), p1(x), p2(x), respectively, and modify
p0(x), p2(x) to p̃0(x), p̃2(x) using (26) to get correct cell averages.

(b) Compute the normalized nonlinear weights ωl using (28) and (29) for l = 0, 1, 2.
(c) The reconstruction polynomial is given by un,new

0 |Ij = ω0p̃0(x) + ω1p1(x) + ω2p̃2(x).

4. The boundary elements un,new
b will be updated by solving from un,new

0 , if any trouble cell
exits.

4.3.1. Identify the troubled cells

The detection of trouble cells uses a minmod function, defined by

m(a1, . . . , al) =

{
smin1≤j≤l |aj|, if s = sign(a1) = · · · = sign(al),

0, otherwise.
(22)

with variation information at both cell boundaries.

Denote the cell average of the solution u as

ūj =
1

hj

∫
Ij

udx (23)

and the variation at the cell boundaries are denoted as

ũj = u(x−j )− ūj and
≈
uj = ūj − u(x+

j−1). (24)

Now we check

ũ
(mod)
j = m(ũj,∆+ūj,∆−ūj),

≈
u

(mod)
j = m(

≈
uj,∆+ūj,∆−ūj), (25)

with the cell average jumps

∆+ūj = ūj+1 − ūj, ∆−ūj = ūj − ūj−1.
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The minmod function in (25) gets enacted and returns other than the first argument, only if the
variation and cell average jumps have different signs, or the variation is more significant than cell
average jumps. In this case, we claim it is a troubled cell, and subject to WENO reconstructions.
We refer the readers to [19] about the comparison among different troubled-cell indicators and
some new approaches [12, 24, 20, 21].

4.3.2. WENO reconstruction of the new polynomials in the troubled cells

The idea is to reconstruct the solution on troubled cell with a convex combination of polyno-
mials on this cell and its immediate neighboring cells. To keep the original cell average on the
target cell, some constant adjustments are needed.

Assume that the cell Ij is a troubled cell. Denote the WG solution polynomial of u0 on the
cells Ij−1, Ij, Ij+1 as p0(x), p1(x), and p2(x), respectively. The polynomials p0(x), and p2(x) are
modified by a constant as follows:

p̃0(x) = p0(x)− p̄0 + p̄1, p̃2(x) = p2(x)− p̄2 + p̄1, (26)

where

p̄0 =
1

hj

∫
Ij

p0(x)dx, p̄1 =
1

hj

∫
Ij

p1(x)dx, p̄2 =
1

hj

∫
Ij

p2(x)dx.

The nonlinear WENO reconstruction polynomial pnew
1 (x) is defined by a convex combination of

these modified polynomials:

pnew
1 (x) = ω0p̃0(x) + ω1p1(x) + ω2p̃2(x), (27)

where the weights w0, w1 and w2 are non-negative and yet to be determined. It is easy to prove that
pnew

1 has the same cell average and order of accuracy as p1 if the weights satisfy ω0 + ω1 + ω2 = 1.

The normalized nonlinear weights are defined as,

ω0 =
ω̄0

ω̄0 + ω̄1 + ω̄2

, ω1 =
ω̄1

ω̄0 + ω̄1 + ω̄2

, ω2 =
ω̄2

ω̄0 + ω̄1 + ω̄2

, (28)

where the non-normalized nonlinear weights ω̄j (j = 0, 1, 2) are functions of the positive linear
weights γj and the so-called smoothness indicators βj as follows:

ω̄j =
γj

(10−6 + βj)2
, where βj =

k∑
`=1

∫
Ij

h2`−1
j

[
∂`

∂x`
pj(x)

]2

dx. (29)

In general we put larger weight on the central cell, i.e., γ1 � γ0 and γ1 � γ2, since it is usually
the best for smooth functions. In the numerical tests we take

γ0 = 0.001, γ1 = 0.998, γ2 = 0.001,

which can maintain the original high order in smooth regions and can keep essentially nonoscillatory
shock transition.
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5. Applications in Burgers Equations

The numerical scheme can be extended to nonlinear hyperbolic equation, for example the
inviscid Burgers equations. The Burgers equations considered in this paper is described as follows:

∂u

∂t
+ u

∂u

∂x
= 0, (x, t) ∈ I × J (30)

Bu = 0, x ∈ Γ, (31)

with initial condition u(x, 0) = h(x), where B is the operator for boundary conditions. We consider
both periodic boundary conditions u(a, t) = u(b, t) for domain I = [a, b], and Dirichlet boundary
conditions u(a, t) = h1(t) and u(b, t) = h2(t). Denote H1

B,Γ(I)) = {u ∈ H1(I) : Bu = 0}.
The weak form for problem (30)-(31) is to find u ∈ H1

B,Γ(I)), such that

(ut, v) +
1

3
(uux, v)− 1

3
(uu, vx) = 0, ∀v ∈ H1(I), t ∈ (0, T ] (32)

and u(x, 0) = h(x), x ∈ I.

Similarly as the bilinear form for hyperbolic equation, here we introduce the trilinear form for
w, u, v ∈ Vh, as following:

B(w;u, v) =
1

3
(wdwu, v0)− 1

3
(u0, wdwv) + SBurgers(w;u, v), (33)

where

SBurgers(w;u, v) =
1

3
〈|w0|(u0 − ub), v0 − vb〉. (34)

Denote the approximation space V Bh = {u ∈ Vh : Bu = 0} and the space for test function as V T
h .

For periodic boundary condition,

V Bh := {u = {u0, ub} ∈ Vh : ub|a − ub|b = 0},

and the space for test function is also V T
h = V Bh ; and for Dirichlet boundary condition,

V Bh := {u = {u0, ub} ∈ Vh : ub|a = h1(t), and ub|b = h2(t)},

and V T
h = Vh. Then the semi-discrete WG scheme is proposed for Burgers equation as below.

Algorithm 3. A weak Galerkin approximation for equation (30)-(31) is to seek uh = {u0, ub} ∈
V Bh satisfying the following:

(
∂u0

∂t
, v0) +B(u0;uh, v) = 0, ∀v = {v0, vb} ∈ V T

h . (35)

uh(x, 0) = Qhh(x), x ∈ I. (36)

Lemma 8. The solution uh = {u0, ub} to the semi-discrete WG scheme (35)-(36) satisfies the
following L2-stability.

d

dt
‖u0‖2 ≤ 0.
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Proof. By the definition of trilinear form a(·, ·), for ∀v ∈ V T
h

B(v; v, v) =
1

3
(v0dwv, v0)− 1

3
(v0dwv, v0) + SBurgers(v; v, v)

= SBurgers(v; v, v).

By taking v = uh, we get

0 =
1

2

d

dt
‖u0‖2 + SBurgers(uh;uh, uh)

=
1

2

d

dt
‖u0‖2 +

1

3

∑
Ij∈Ih

([
|u0|(u0 − ub)2

]
|xj−1

+
[
|u0|(u0 − ub)2

]
|xj

)
. (37)

Since

|u0|(u0 − ub)2|xj
≥ 0, j = 0, 1, . . . , N,

we have

d

dt
‖u0‖2 ≤ 0,

which completes the proof. �

In the fully discretized numerical scheme, we use the previous solution u0 to linearize the trilinear
term B(u0;uh, v) by B(un−1

0 ;unh, v) to solve for unh.

6. Numerical Test

In this section, we shall report the numerical performance of the proposal scheme. Eight
numerical experiments shall be tested to validate our numerical scheme. Although only the sub-
optimal convergence can be proved in Theorem 7, one can observe the optimal rate in convergence
for both linear convection equation and Burgers equation.

6.1. Convergence Test for Linear Convection Equation

In this test, we shall validate the theoretical conclusion for the WG algorithm. Let I = [0, 2π],
β = 1, and the exact solution is chosen as u = exp(−t) sin(x). The time discretization is performed
by 3rd order TVD Runge-Kutta method with ∆t = 10−4. We calculate the numerical solution up
to time T = 0.01. The error profiles and convergence results are reported in Table 1. As shown
in this table, we achieve the optimal rate in convergence for errors measured in L2 and H1 norms,
which are at the order O(hk+1) and O(hk).
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Table 1: Example 6.1: Error profiles and convergence results.

1/h Relative L2-Error Order Relative H1-Error Order

k = 0
10 2.6262E-01 1.0000E+00
20 1.0556E-01 1.31 1.0000E+00 -
40 4.8793E-02 1.11 1.0000E+00 -
80 2.3537E-02 1.05 1.0000E+00 -
160 1.1562E-02 1.03 1.0000E+00 -

k = 1
10 9.4438E-02 3.0025E-01
20 1.3729E-02 2.78 1.0825E-01 1.47
40 2.6776E-03 2.36 4.8933E-02 1.15
80 6.2248E-04 2.10 2.4281E-02 1.01
160 1.5652E-04 1.99 1.2567E-02 0.95

k = 2
10 1.6589E-03 1.5317E-02
20 1.9020E-04 3.12 3.8428E-03 1.99
40 2.2934E-05 3.05 1.0239E-03 1.91
80 3.0247E-06 2.92 2.5573E-04 2.00
160 4.0292E-07 2.91 6.3270E-05 2.02

6.2. WENO Limiter for Linear Convection Equation

In this test, we shall choose I = [0, 1], β = 1, and the following initial condition for the unsteady
linear convection equation in (1):

u(x, t = 0) = H(0, 2)−H(0.4) (38)

where H represents the Heaviside step function. The boundary condition for this case is set to be
homogeneous inflow boundary condition. The step function will move along x-axis to the right as
time envolves. However, the discontinuities may develop oscillations in the numerical solution.

Case 6.2a. Performance of WG algorithm.

First, we shall present the numerical performance of the proposed WG scheme with different
polynomial orders. Let h = 1/100 and the time integration is carried out using a simple forward
Euler scheme with time step ∆t = 10−4.

The numerical solutions for different WG elements are plotted in Figure 1. The solid line and
dotted line plot the numerical solutions at time = 0.1 and time = 0.2, respectively. As one can see
that the solution of this linear advection equation is a step function moves to the right. However,
the numerical solutions with k ≥ 1 show oscillations at the location with discontinuities. Increasing
the degree of polynomial does not improve the simulations, but leads to more oscillations. In order
to improve the numerical performance, one has to increase resolution of the spatial variable for
resolving such discontinuities.
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The values of mass (computed as: Mass(t) =
∑

j

∫
Ij
|u0(x, t)|dt) and energy (computed as:

Energy(t) =
∑

j

∫
Ij
|u0(x, t)|2dt) are plotted in Figure 2. It can be observed that the mass is

well conserved for all the WG elements. However, the quantity of energy is well conserved except
constant WG element. Besides, for k = 0, the discontinuity in the numerical solution is smoothed
out, as shown in Figure 1(a), which is poor approximation.
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Figure 1: Example 6.2a: Plot of numerical solution for WG element on h = 0.01 with: (a) k = 0; (b) k = 1; (c)
k = 2; (d) k = 3. In all the figures, the solid lines denote the numerical solutions and the dotted lines denote the
exact solutions.
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Figure 2: Example 6.2a: Plots of WG approximation properties on mesh h = 0.01 with various WG elements for
(a) mass; (b) energy.

Case 6.2b. Performance of WENO Limiter

Due to the possible oscillation in the linear advection equation’s approximation, the WENO
limiter can be applied for filtering out the oscillation around discontinuities. This test is conducted
to validate the effectiveness for WENO limiter.

The time integration is carried out using the third order TVD Runge-Kutta method with time
step ∆t = 10−3 and the numerical solutions are plotted in Figure 3 for WG element k = 1, k = 2,
and k = 3. Comparing to forward Euler scheme, shown in Figure 1, by purely increasing the
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accuracy in time stepping method cannot generate the oscillation-free solutions. Besides, higher
order WG element may results in more oscillations.
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Figure 3: Example 6.2b: Plot of numerical solution on mesh h = 0.01 with for WG elements (a) k = 1; (b) k = 2;
(c) k = 3.
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Figure 4: Example 6.2b: Plot of numerical solution on mesh h = 0.01 with WENO limiter for WG elements (a)
k = 1; (b) k = 2; (c) k = 3.

In order to improve the numerical simulation, we shall employ the WENO limiter as Algo-
rithm 2. The numerical solutions for WG with WENO limiter on the same mesh with h = 0.01
and ∆t = 10−3 for WG element k = 1, k = 2, and k = 3 are plotted in Figure 4. It can be
observed that after employing the limiter, the oscillations near discontinuity have been cleared.
By using higher order WG element, the sharp discontinuity can be well captured. Besides, the
mass corresponding to the scheme with limiter and without limiter for k = 1 is plotted in Figure 5.
It is noted that adding limiter maintains the mass conservation of WG scheme.
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Figure 5: Example 6.2b: illustration of mass for the mesh with h = 0.01 and k = 1.

6.3. Convergence Test for Burgers Equation

Table 2: Example 6.3: Error profiles and convergence results.

1/h Relative L2-Error Order Relative H1-Error Order

k = 0
10 9.0626E-02 1.0000E+00 -
20 4.5336E-02 1.00 1.0000E+00 -
40 2.2671E-02 1.00 1.0000E+00 -
80 1.1336E-02 1.00 1.0000E+00 -
160 5.6682E-03 1.00 1.0000E+00 -

k = 1
10 9.0009E-03 9.0579E-02 -
20 2.2561E-03 2.00 4.5399E-02 1.00
40 5.6618E-04 1.99 2.2800E-02 0.99
80 1.4304E-04 1.98 1.1544E-02 0.98
160 1.8700E-05 2.94 5.9401E-03 0.96

k = 2
10 1.7818E-04 3.6759E-03 -
20 2.2297E-05 3.00 9.2196E-04 2.00
40 2.7890E-06 3.00 2.3257E-04 1.99
80 3.5043E-07 2.99 6.0037E-05 1.95
160 4.5138E-08 2.96 1.5503E-05 1.95

In this test, we shall validate the convergence results for the Burgers equations. Let I = [0, 2π]
and the source term is added such that the equation is satisfied for choosing the exact solution as

u = e−t sin πx.
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The time discretization is replaced by 3rd order TVD Runge-Kutta method. We perform the
WG simulation on different size of the meshes. Here ∆t = 10−5 is chosen sufficient small in order
to not affect the convergence rate. The explicit time stepping methods are calculated up to time
= 0.01. The error profiles and convergence test are reported in Table 2. It shows that the relative
L2-error converges at the order O(hk+1) and the relative H1-error converges at the order O(hk).

6.4. Burgers 1D: Smooth initial profile for steady shock

In this case, let I = [0, 1] and the initial condition is set to be a sinusoidal profile

u(x, t = 0) = sin(2πx) (39)

and the boundary conditions are homogeneous Dirichlet at both ends of the domain.

This set of conditions yields a solution that initially develops into a steady shock due to the
initial condition and dies off. In this test, the time integration is carried out using a backward
Euler with ∆t = 10−4. The numerical solution corresponding to mesh with h = 0.01 and k = 2 is
plotted in Figure 6. Because the discontinuity is located on the grid point, the numerical scheme
without WENO limiter can approximate the problem without oscillation very well.

In this test, since the problem is with steady shock, so it is possible to generate the well fitted
mesh. However, for most of Burgers equation, generating such mesh is impossible.
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Figure 6: Example 6.5: Numerical solution for WG scheme for k = 2 and h = 0.01.

6.5. Burger’s equation: smooth initial condition

Let I = [0, 1] and consider the following smooth initial condition:

u(0) = exp(−200(x− 0.3)2). (40)
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Figure 7: Example 6.5: Numerical solution of h =
1

100
,∆t = 10−3 and k = 1 for (a) Forward Euler method; (b)

Backward Euler method; (c) Third order Runge-Kutta method; (d) Plot of Mass.
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Figure 8: Example 6.5: Numerical solution of h =
1

100
,∆t = 10−3 and k = 1 with WENO limiter for (a) Forward

Euler method; (b) Backward Euler method; (c) Third order Runge-Kutta method; (d) Plot of Mass.

Different time discretization schemes have been used in the simulation, including forward Euler
method, backward Euler method, and RK3 method. The results for linear WG element on the mesh
with h = 0.01 and ∆t = 10−3 are plotted in Figure 7 without limiter and Figure 8 with limiter. As
one can observe that the simulations without limiter show oscillations near discontinuities, while
by adding limiter in the scheme can significantly clear the oscillations. Besides, the forward Euler
scheme shows the best mass conservation property.
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Figure 9: Example 6.5: Numerical solution of h =
1

1000
, ∆t = 10−4 and k = 1 for (a) scheme without limiter; (b)

scheme with limiter.

Next, we perform the higher resolution simulation with and without WENO limiters and
the numerical performance is illustrated in Figure 9. The WG linear solution on the mesh
h = 10−3,∆t = 10−4 without limiter is plotted in Figure 9 (a). Oscillations are observed near
discontinuities. In comparison, at each time step, we can perform the WENO limiter to filter out
the oscillation and the numerical solutions are plotted in Figure 9 (b). As seen in this figure, the
oscillation is removed and produced better numerical simulations for this Burgers equation.

6.6. Cauchy data as initial profile

In this example, we consider the initial profile as the Cauchy data

u(x, 0) =


2, if x < 0

2− x, if 0 ≤ x ≤ 1

1, if x > 1

. (41)

The solution can be written as

u(x, t) =


2, if x < 2t
2− x
1− t

, if 2t ≤ x ≤ 1 + t

1, if x > 1 + t

, (42)

for t ≥ 0.

The numerical solutions corresponding to the scheme without and with WENO limiter are
plotted in Figure 10-11. Figure 10 (a) plots the simulation with k = 1 by solid lines for time =
0.1, 0.3, and 0.5. The exact solutions are illustrated as the dotted lines. Mild oscillations can be
observed around x = 2× time and x = 1 + time. By employing the WENO limiter for each time
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step, the numerical solution is plotted in Figure 10 (b). As removing the oscillations, we have
improved the simulation. The similar conclusions can be made for the WG element with k = 2 in
the Figure 11.
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Figure 10: Example 6.6: WG solution on the mesh h = 0.01 with k = 1 for: (a) no limiter; (b) with WENO limiter.
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Figure 11: Example 6.6: WG solution on the mesh h = 0.01 with k = 2 for: (a) no limiter; (b) with WENO limiter.

6.7. Burgers’ equation: discontinuous initial condition

We consider the Burgers’ equation with homogeneous boundary conditions. The initial condi-
tion is taken to be a step function

u(0) =

{
1, if x ≤ 0.5

0, if x ≥ 0.5
, (43)
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and choose the final time as T = 0.60.

For this problem, the wave speed is 0.5 and thus the exact solution is

u =


x

t
, if x < t,

1, if t ≤ x ≤ 0.5 +
t

2
,

0, if x > 0.5 +
t

2
.
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Figure 12: Example 6.7: Numerical solutions for linear WG scheme on mesh with h = 10−3 and forward Euler
scheme with ∆t = 10−4 for schemes (a) without limiter; (b) with limiter.

WG simulation with linear element is performed on the mesh with h = 10−3, forward Euler
method with ∆t = 10−3 for time stepping method and the numerical solution is plotted in Figure 12
(a). There are two issues related to this figure. First, the oscillations are shown near the shock

front. Second, at time = 0.6, the shock front should be located at x = 0.5 +
0.6

2
= 0.8. However,

the calculated shock front is slower than the real shock front.

The WENO limiter is employed for solving the first issue. We perform the limiter procedure
at each time step for the same spatial and temporal discretization. The oscillations are removed
by our limiter, which is shown in Figure 12 (b). However, the shock front is moving faster than
the non-limiter one, but still slower than the exact shock front at time = 0.6, which should be at
x = 0.8.

In order to improve the numerical performance, we conduct our scheme on forward Euler’s
method with ∆t = 10−5 and keep the simulation scheme (with WENO limiter) as previous exper-
iment. The numerical solutions are compared with exact solutions in Figure 13(a). The numerical
solutions and exact solutions are plotted by solid lines and dotted lines, respectively. One can
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observe the well agreement in this figure. Besides, the mass values are illustrated in Figure 13 (b),
which shows the mass conservation property.
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Figure 13: Example 6.7: (a) Numerical solutions for linear WG scheme on mesh with h = 10−3 and forward Euler
scheme with ∆t = 10−5 for schemes with limiter; (b) Plot of Mass value for the scheme in (a).

6.8. Rarefaction Wave

Let I = [−1, 4], and consider the initial data as

u(x, 0) =

{
1, x < 0

2, x > 0
, (44)

and the exact solution is a rarefaction wave of the form

u(x, 0) =


1, x < t,

x/t, t ≤ x ≤ 2t,

2, x > 2t.

(45)

We perform the linear WG simulation with WENO limiter on the mesh of h = 10−3 and ∆t = 10−4

and the numerical solutions for various time are plotted in Figure 14. The numerical solutions are
plotted with solid lines and the exact solutions are illustrated by dotted lines. Again, it shows
that our approximation agrees with the exact solution very well.
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Figure 14: Example 6.8. Plot of numerical and exact solutions for different time. The numerical solutions are
plotted by solid lines and the exact solutions are plotted by dotted lines.

7. Conclusion and Remark

In this paper, we have developed a new upwind weak Galerkin finite element method for time
dependent hyperbolic equations. The upwind stabilizer has been utilized in the numerical scheme.
Besides, in order to design the oscillation-free scheme, we have employed WENO limiter to reduce
or remove the oscillation while remain the same mass quantity. The error estimate in L2-norm has
been provided and validated in the numerical tests. Then the same approach has been extended
to Burgers equations.

As the future work plan, we shall extend the scheme to two dimensional and three dimen-
sional Euler problems and Burgers problems. The associated stability and error analysis will be
investigated in the future.

References

[1] V. Anaya, G. Gatica, D. Mora, and R. Ruiz-Baier, An augmented velocity-
vorticitypressure formulation for the Brinkman equations, Internat. J. Numer. Methods Fluids,
79 (2015):109-137.

[2] R. Biswas, K. D. Devine and J. Flaherty, Parallel, adaptive finite element methods for
conservation laws, Applied Numerical Mathematics, 14:255–283, 1994.
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